Cargando…
The joint lasso: high-dimensional regression for group structured data
We consider high-dimensional regression over subgroups of observations. Our work is motivated by biomedical problems, where subsets of samples, representing for example disease subtypes, may differ with respect to underlying regression models. In the high-dimensional setting, estimating a different...
Autores principales: | Dondelinger, Frank, Mukherjee, Sach |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868060/ https://www.ncbi.nlm.nih.gov/pubmed/30192903 http://dx.doi.org/10.1093/biostatistics/kxy035 |
Ejemplares similares
-
The lasso for high dimensional regression with a possible change point
por: Lee, Sokbae, et al.
Publicado: (2015) -
Seagull: lasso, group lasso and sparse-group lasso regularization for linear regression models via proximal gradient descent
por: Klosa, Jan, et al.
Publicado: (2020) -
Molecular heterogeneity at the network level: high-dimensional testing, clustering and a TCGA case study
por: Städler, Nicolas, et al.
Publicado: (2017) -
LASSO type penalized spline regression for binary data
por: Mullah, Muhammad Abu Shadeque, et al.
Publicado: (2021) -
Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD
por: Ogutu, Joseph O, et al.
Publicado: (2014)