Cargando…
Fungal and bacterial communities of ‘Pinot noir’ must: effects of vintage, growing region, climate, and basic must chemistry
BACKGROUND: The geographic and temporal distributions of bacterial and fungal populations are poorly understood within the same wine grape cultivar. In this work, we describe the microbial composition from ‘Pinot noir’ must with respect to vintage, growing region, climate, and must chemistry across...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868071/ https://www.ncbi.nlm.nih.gov/pubmed/33604194 http://dx.doi.org/10.7717/peerj.10836 |
_version_ | 1783648393351921664 |
---|---|
author | Steenwerth, Kerri L. Morelan, Ian Stahel, Ruby Figueroa-Balderas, Rosa Cantu, Dario Lee, Jungmin Runnebaum, Ron C. Poret-Peterson, Amisha T. |
author_facet | Steenwerth, Kerri L. Morelan, Ian Stahel, Ruby Figueroa-Balderas, Rosa Cantu, Dario Lee, Jungmin Runnebaum, Ron C. Poret-Peterson, Amisha T. |
author_sort | Steenwerth, Kerri L. |
collection | PubMed |
description | BACKGROUND: The geographic and temporal distributions of bacterial and fungal populations are poorly understood within the same wine grape cultivar. In this work, we describe the microbial composition from ‘Pinot noir’ must with respect to vintage, growing region, climate, and must chemistry across the states of California and Oregon, USA. MATERIALS AND METHODS: We sampled ‘Pinot noir’ clone 667 clusters from 15 vineyards existing in a latitudinal gradient spanning nearly 1,200 km in California and Oregon for two vintages (2016 and 2017). Regions included five American Viticultural Areas (AVA). In order from southern California to Oregon, these AVAs were Santa Barbara, Monterey, Sonoma, Mendocino, and Willamette Valley. Uninoculated grape musts were subjected to 16S rRNA gene and ITS-1 amplicon sequencing to assess composition of microbial communities. We also measured grape maturity metrics. Finally, to describe regions by precipitation and growing degree days, we queried the Parameter-elevation Regressions on Independent Slopes Model (PRISM) spatial climate dataset. RESULTS: Most of the dominant bacterial taxa in must samples were in the family Enterobacteriaceae, notably the lactic acid bacteria or the acetic acid bacteria groups, but some, like the betaproteobacterial genus Massilia, belonged to groups not commonly found in grape musts. Fungal communities were dominated by Hanseniaspora uvarum (Saccharomycetaceae). We detected relationships between covariates (e.g., vintage, precipitation during the growing season, pH, titratable acidity, and total soluble solids) and bacterial genera Gluconobacter and Tatumella in the family Enterobacteraceae, Sphingomonas (Sphingomonodaceae), Lactobacillus (Lactobacillaceae), and Massilia (Oxalobacteraceae), as well as fungal genera in Hanseniaspora, Kazachstania, Lachancea, Torulaspora in the family Saccharomycetaceae, as well as Alternaria (Pleosporaceae), Erysiphe (Erysiphaceae), and Udeniomyces (Cystofilobasidiaceae). Fungal community distances were significantly correlated with geographic distances, but this was not observed for bacterial communities. Climate varied across regions and vintages, with growing season precipitation ranging from 11 mm to 285 mm and growing degree days ranging from 1,245 to 1,846. DISCUSSION: We determined that (1) bacterial beta diversity is structured by growing season precipitation, (2) fungal beta diversity reflects growing season precipitation and growing degree days, and (3) microbial differential abundances of specific genera vary with vintage, growing season precipitation, and fruit maturity metrics. Further, the correlation between fungal community dissimilarities and geographic distance suggests dispersal limitation and the vineyard as a source for abundant fungal taxa. Contrasting this observation, the lack of correlation between bacterial community dissimilarity and geographic distance suggests that environmental filtering is shaping these communities. |
format | Online Article Text |
id | pubmed-7868071 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78680712021-02-17 Fungal and bacterial communities of ‘Pinot noir’ must: effects of vintage, growing region, climate, and basic must chemistry Steenwerth, Kerri L. Morelan, Ian Stahel, Ruby Figueroa-Balderas, Rosa Cantu, Dario Lee, Jungmin Runnebaum, Ron C. Poret-Peterson, Amisha T. PeerJ Agricultural Science BACKGROUND: The geographic and temporal distributions of bacterial and fungal populations are poorly understood within the same wine grape cultivar. In this work, we describe the microbial composition from ‘Pinot noir’ must with respect to vintage, growing region, climate, and must chemistry across the states of California and Oregon, USA. MATERIALS AND METHODS: We sampled ‘Pinot noir’ clone 667 clusters from 15 vineyards existing in a latitudinal gradient spanning nearly 1,200 km in California and Oregon for two vintages (2016 and 2017). Regions included five American Viticultural Areas (AVA). In order from southern California to Oregon, these AVAs were Santa Barbara, Monterey, Sonoma, Mendocino, and Willamette Valley. Uninoculated grape musts were subjected to 16S rRNA gene and ITS-1 amplicon sequencing to assess composition of microbial communities. We also measured grape maturity metrics. Finally, to describe regions by precipitation and growing degree days, we queried the Parameter-elevation Regressions on Independent Slopes Model (PRISM) spatial climate dataset. RESULTS: Most of the dominant bacterial taxa in must samples were in the family Enterobacteriaceae, notably the lactic acid bacteria or the acetic acid bacteria groups, but some, like the betaproteobacterial genus Massilia, belonged to groups not commonly found in grape musts. Fungal communities were dominated by Hanseniaspora uvarum (Saccharomycetaceae). We detected relationships between covariates (e.g., vintage, precipitation during the growing season, pH, titratable acidity, and total soluble solids) and bacterial genera Gluconobacter and Tatumella in the family Enterobacteraceae, Sphingomonas (Sphingomonodaceae), Lactobacillus (Lactobacillaceae), and Massilia (Oxalobacteraceae), as well as fungal genera in Hanseniaspora, Kazachstania, Lachancea, Torulaspora in the family Saccharomycetaceae, as well as Alternaria (Pleosporaceae), Erysiphe (Erysiphaceae), and Udeniomyces (Cystofilobasidiaceae). Fungal community distances were significantly correlated with geographic distances, but this was not observed for bacterial communities. Climate varied across regions and vintages, with growing season precipitation ranging from 11 mm to 285 mm and growing degree days ranging from 1,245 to 1,846. DISCUSSION: We determined that (1) bacterial beta diversity is structured by growing season precipitation, (2) fungal beta diversity reflects growing season precipitation and growing degree days, and (3) microbial differential abundances of specific genera vary with vintage, growing season precipitation, and fruit maturity metrics. Further, the correlation between fungal community dissimilarities and geographic distance suggests dispersal limitation and the vineyard as a source for abundant fungal taxa. Contrasting this observation, the lack of correlation between bacterial community dissimilarity and geographic distance suggests that environmental filtering is shaping these communities. PeerJ Inc. 2021-02-04 /pmc/articles/PMC7868071/ /pubmed/33604194 http://dx.doi.org/10.7717/peerj.10836 Text en http://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, made available under the Creative Commons Public Domain Dedication (http://creativecommons.org/publicdomain/zero/1.0/) . This work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Agricultural Science Steenwerth, Kerri L. Morelan, Ian Stahel, Ruby Figueroa-Balderas, Rosa Cantu, Dario Lee, Jungmin Runnebaum, Ron C. Poret-Peterson, Amisha T. Fungal and bacterial communities of ‘Pinot noir’ must: effects of vintage, growing region, climate, and basic must chemistry |
title | Fungal and bacterial communities of ‘Pinot noir’ must: effects of vintage, growing region, climate, and basic must chemistry |
title_full | Fungal and bacterial communities of ‘Pinot noir’ must: effects of vintage, growing region, climate, and basic must chemistry |
title_fullStr | Fungal and bacterial communities of ‘Pinot noir’ must: effects of vintage, growing region, climate, and basic must chemistry |
title_full_unstemmed | Fungal and bacterial communities of ‘Pinot noir’ must: effects of vintage, growing region, climate, and basic must chemistry |
title_short | Fungal and bacterial communities of ‘Pinot noir’ must: effects of vintage, growing region, climate, and basic must chemistry |
title_sort | fungal and bacterial communities of ‘pinot noir’ must: effects of vintage, growing region, climate, and basic must chemistry |
topic | Agricultural Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868071/ https://www.ncbi.nlm.nih.gov/pubmed/33604194 http://dx.doi.org/10.7717/peerj.10836 |
work_keys_str_mv | AT steenwerthkerril fungalandbacterialcommunitiesofpinotnoirmusteffectsofvintagegrowingregionclimateandbasicmustchemistry AT morelanian fungalandbacterialcommunitiesofpinotnoirmusteffectsofvintagegrowingregionclimateandbasicmustchemistry AT stahelruby fungalandbacterialcommunitiesofpinotnoirmusteffectsofvintagegrowingregionclimateandbasicmustchemistry AT figueroabalderasrosa fungalandbacterialcommunitiesofpinotnoirmusteffectsofvintagegrowingregionclimateandbasicmustchemistry AT cantudario fungalandbacterialcommunitiesofpinotnoirmusteffectsofvintagegrowingregionclimateandbasicmustchemistry AT leejungmin fungalandbacterialcommunitiesofpinotnoirmusteffectsofvintagegrowingregionclimateandbasicmustchemistry AT runnebaumronc fungalandbacterialcommunitiesofpinotnoirmusteffectsofvintagegrowingregionclimateandbasicmustchemistry AT poretpetersonamishat fungalandbacterialcommunitiesofpinotnoirmusteffectsofvintagegrowingregionclimateandbasicmustchemistry |