Cargando…
Sample Size Requirements for Applying Diagnostic Classification Models
Results of a comprehensive simulation study are reported investigating the effects of sample size, test length, number of attributes and base rate of mastery on item parameter recovery and classification accuracy of four DCMs (i.e., C-RUM, DINA, DINO, and LCDMREDUCED). Effects were evaluated using b...
Autores principales: | Sen, Sedat, Cohen, Allan S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868330/ https://www.ncbi.nlm.nih.gov/pubmed/33569029 http://dx.doi.org/10.3389/fpsyg.2020.621251 |
Ejemplares similares
-
The Impact of Test and Sample Characteristics on Model Selection and Classification Accuracy in the Multilevel Mixture IRT Model
por: Sen, Sedat, et al.
Publicado: (2020) -
Sample Size Requirements for Applying Mixed Polytomous Item Response Models: Results of a Monte Carlo Simulation Study
por: Kutscher, Tanja, et al.
Publicado: (2019) -
Sample Size Requirements for Estimation of Item Parameters in the Multidimensional Graded Response Model
por: Jiang, Shengyu, et al.
Publicado: (2016) -
Applying the M(2) Statistic to Evaluate the Fit of Diagnostic Classification Models in the Presence of Attribute Hierarchies
por: Chen, Fu, et al.
Publicado: (2018) -
Integrating a Statistical Topic Model and a Diagnostic Classification Model for Analyzing Items in a Mixed Format Assessment
por: Choi, Hye-Jeong, et al.
Publicado: (2021)