Cargando…

Grain Inorganic Arsenic Content in Rice Managed Through Targeted Introgressions and Irrigation Management

Arsenic (As) accumulation in rice grain is a significant public health concern. Inorganic As (iAs) is of particular concern because it has increased toxicity as compared to organic As. Irrigation management practices, such as alternate wetting and drying (AWD), as well as genotypic differences betwe...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernández-Baca, Cristina P., McClung, Anna M., Edwards, Jeremy D., Codling, Eton E., Reddy, Vangimalla R., Barnaby, Jinyoung Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868431/
https://www.ncbi.nlm.nih.gov/pubmed/33569070
http://dx.doi.org/10.3389/fpls.2020.612054
_version_ 1783648450890432512
author Fernández-Baca, Cristina P.
McClung, Anna M.
Edwards, Jeremy D.
Codling, Eton E.
Reddy, Vangimalla R.
Barnaby, Jinyoung Y.
author_facet Fernández-Baca, Cristina P.
McClung, Anna M.
Edwards, Jeremy D.
Codling, Eton E.
Reddy, Vangimalla R.
Barnaby, Jinyoung Y.
author_sort Fernández-Baca, Cristina P.
collection PubMed
description Arsenic (As) accumulation in rice grain is a significant public health concern. Inorganic As (iAs) is of particular concern because it has increased toxicity as compared to organic As. Irrigation management practices, such as alternate wetting and drying (AWD), as well as genotypic differences between cultivars, have been shown to influence As accumulation in rice grain. A 2 year field study using a Lemont × TeQing backcross introgression line (TIL) mapping population examined the impact of genotype and AWD severity on iAs grain concentrations. The “Safe”-AWD [35–40% soil volumetric water content (VWC)] treatment did not reduce grain iAs levels, whereas the more severe AWD30 (25–30% VWC) consistently reduced iAs concentrations across all genotypes. The TILs displayed a range of iAs concentrations by genotype, from less than 10 to up to 46 μg kg(–1) under AWD30 and from 28 to 104 μg kg(–1) under Safe-AWD. TIL grain iAs concentrations for flood treatments across both years ranged from 26 to 127 μg kg(–1). Additionally, seven quantitative trait loci (QTLs) were identified in the mapping population associated with grain iAs. A subset of eight TILs and their parents were grown to confirm field-identified grain iAs QTLs in a controlled greenhouse environment. Greenhouse results confirmed the genotypic grain iAs patterns observed in the field; however, iAs concentrations were higher under greenhouse conditions as compared to the field. In the greenhouse, the number of days under AWD was negatively correlated with grain iAs concentrations. Thus, longer drying periods to meet the same soil VWC resulted in lower grain iAs levels. Both the number and combinations of iAs-affecting QTLs significantly impacted grain iAs concentrations. Therefore, identifying more grain iAs-affecting QTLs could be important to inform future breeding efforts for low iAs rice varieties. Our study suggests that coupling AWD practices targeting a soil VWC of less than or equal to 30% coupled with the use of cultivars developed to possess multiple QTLs that negatively regulate grain iAs concentrations will be helpful in mitigating exposure of iAs from rice consumption.
format Online
Article
Text
id pubmed-7868431
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-78684312021-02-09 Grain Inorganic Arsenic Content in Rice Managed Through Targeted Introgressions and Irrigation Management Fernández-Baca, Cristina P. McClung, Anna M. Edwards, Jeremy D. Codling, Eton E. Reddy, Vangimalla R. Barnaby, Jinyoung Y. Front Plant Sci Plant Science Arsenic (As) accumulation in rice grain is a significant public health concern. Inorganic As (iAs) is of particular concern because it has increased toxicity as compared to organic As. Irrigation management practices, such as alternate wetting and drying (AWD), as well as genotypic differences between cultivars, have been shown to influence As accumulation in rice grain. A 2 year field study using a Lemont × TeQing backcross introgression line (TIL) mapping population examined the impact of genotype and AWD severity on iAs grain concentrations. The “Safe”-AWD [35–40% soil volumetric water content (VWC)] treatment did not reduce grain iAs levels, whereas the more severe AWD30 (25–30% VWC) consistently reduced iAs concentrations across all genotypes. The TILs displayed a range of iAs concentrations by genotype, from less than 10 to up to 46 μg kg(–1) under AWD30 and from 28 to 104 μg kg(–1) under Safe-AWD. TIL grain iAs concentrations for flood treatments across both years ranged from 26 to 127 μg kg(–1). Additionally, seven quantitative trait loci (QTLs) were identified in the mapping population associated with grain iAs. A subset of eight TILs and their parents were grown to confirm field-identified grain iAs QTLs in a controlled greenhouse environment. Greenhouse results confirmed the genotypic grain iAs patterns observed in the field; however, iAs concentrations were higher under greenhouse conditions as compared to the field. In the greenhouse, the number of days under AWD was negatively correlated with grain iAs concentrations. Thus, longer drying periods to meet the same soil VWC resulted in lower grain iAs levels. Both the number and combinations of iAs-affecting QTLs significantly impacted grain iAs concentrations. Therefore, identifying more grain iAs-affecting QTLs could be important to inform future breeding efforts for low iAs rice varieties. Our study suggests that coupling AWD practices targeting a soil VWC of less than or equal to 30% coupled with the use of cultivars developed to possess multiple QTLs that negatively regulate grain iAs concentrations will be helpful in mitigating exposure of iAs from rice consumption. Frontiers Media S.A. 2021-01-25 /pmc/articles/PMC7868431/ /pubmed/33569070 http://dx.doi.org/10.3389/fpls.2020.612054 Text en Copyright © 2021 Fernández-Baca, McClung, Edwards, Codling, Reddy and Barnaby. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Fernández-Baca, Cristina P.
McClung, Anna M.
Edwards, Jeremy D.
Codling, Eton E.
Reddy, Vangimalla R.
Barnaby, Jinyoung Y.
Grain Inorganic Arsenic Content in Rice Managed Through Targeted Introgressions and Irrigation Management
title Grain Inorganic Arsenic Content in Rice Managed Through Targeted Introgressions and Irrigation Management
title_full Grain Inorganic Arsenic Content in Rice Managed Through Targeted Introgressions and Irrigation Management
title_fullStr Grain Inorganic Arsenic Content in Rice Managed Through Targeted Introgressions and Irrigation Management
title_full_unstemmed Grain Inorganic Arsenic Content in Rice Managed Through Targeted Introgressions and Irrigation Management
title_short Grain Inorganic Arsenic Content in Rice Managed Through Targeted Introgressions and Irrigation Management
title_sort grain inorganic arsenic content in rice managed through targeted introgressions and irrigation management
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868431/
https://www.ncbi.nlm.nih.gov/pubmed/33569070
http://dx.doi.org/10.3389/fpls.2020.612054
work_keys_str_mv AT fernandezbacacristinap graininorganicarseniccontentinricemanagedthroughtargetedintrogressionsandirrigationmanagement
AT mcclungannam graininorganicarseniccontentinricemanagedthroughtargetedintrogressionsandirrigationmanagement
AT edwardsjeremyd graininorganicarseniccontentinricemanagedthroughtargetedintrogressionsandirrigationmanagement
AT codlingetone graininorganicarseniccontentinricemanagedthroughtargetedintrogressionsandirrigationmanagement
AT reddyvangimallar graininorganicarseniccontentinricemanagedthroughtargetedintrogressionsandirrigationmanagement
AT barnabyjinyoungy graininorganicarseniccontentinricemanagedthroughtargetedintrogressionsandirrigationmanagement