Cargando…
SSnet: A Deep Learning Approach for Protein-Ligand Interaction Prediction
Computational prediction of Protein-Ligand Interaction (PLI) is an important step in the modern drug discovery pipeline as it mitigates the cost, time, and resources required to screen novel therapeutics. Deep Neural Networks (DNN) have recently shown excellent performance in PLI prediction. However...
Autores principales: | Verma, Niraj, Qu, Xingming, Trozzi, Francesco, Elsaied, Mohamed, Karki, Nischal, Tao, Yunwen, Zoltowski, Brian, Larson, Eric C., Kraka, Elfi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7869013/ https://www.ncbi.nlm.nih.gov/pubmed/33573266 http://dx.doi.org/10.3390/ijms22031392 |
Ejemplares similares
-
Predicting Potential SARS-COV-2 Drugs—In Depth Drug Database Screening Using Deep Neural Network Framework SSnet, Classical Virtual Screening and Docking
por: Karki, Nischal, et al.
Publicado: (2021) -
Quantum Mechanical Assessment of Protein–Ligand Hydrogen Bond Strength Patterns: Insights from Semiempirical Tight-Binding and Local Vibrational Mode Theory
por: Madushanka, Ayesh, et al.
Publicado: (2023) -
A Critical Evaluation of Vibrational Stark Effect (VSE) Probes with the Local Vibrational Mode Theory
por: Verma, Niraj, et al.
Publicado: (2020) -
Papaya Leaf Extracts as Potential Dengue Treatment: An In-Silico Study
por: Madushanka, Ayesh, et al.
Publicado: (2022) -
A revised formulation of the generalized subsystem vibrational analysis (GSVA)
por: Tao, Yunwen, et al.
Publicado: (2021)