Cargando…
Multiphase Contrast-Enhanced CT-Based Machine Learning Models to Predict the Fuhrman Nuclear Grade of Clear Cell Renal Cell Carcinoma
OBJECTIVE: To investigate the predictive performance of different machine learning models for the discrimination of low and high nuclear grade clear cell renal cell carcinoma (ccRCC) by using multiphase computed tomography (CT)-based radiomic features. MATERIALS AND METHODS: A total of 137 consecuti...
Autores principales: | Lai, Shengsheng, Sun, Lei, Wu, Jialiang, Wei, Ruili, Luo, Shiwei, Ding, Wenshuang, Liu, Xilong, Yang, Ruimeng, Zhen, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7869703/ https://www.ncbi.nlm.nih.gov/pubmed/33568946 http://dx.doi.org/10.2147/CMAR.S290327 |
Ejemplares similares
-
CT-based transformer model for non-invasively predicting the Fuhrman nuclear grade of clear cell renal cell carcinoma
por: Yang, Meiyi, et al.
Publicado: (2022) -
VEGFR-1 Expression Relates to Fuhrman Nuclear Grade of Clear Cell Renal Cell Carcinoma
por: Lkhagvadorj, Sayamaa, et al.
Publicado: (2014) -
CT texture analysis: a potential tool for predicting the Fuhrman grade of clear-cell renal carcinoma
por: Feng, Zhan, et al.
Publicado: (2019) -
(18)F-FDG texture analysis predicts the pathological Fuhrman nuclear grade of clear cell renal cell carcinoma
por: Zhang, Linhan, et al.
Publicado: (2021) -
Compare Fuhrman Nuclear and Chromophobe Tumor Grade on Chromophobe RCC
por: Lin, Tsu-Feng, et al.
Publicado: (2019)