Cargando…
Predicting COVID-19 disease progression and patient outcomes based on temporal deep learning
BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has caused health concerns worldwide since December 2019. From the beginning of infection, patients will progress through different symptom stages, such as fever, dyspnea or even death. Identifying disease progression and predicting patien...
Autores principales: | Sun, Chenxi, Hong, Shenda, Song, Moxian, Li, Hongyan, Wang, Zhenjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7869774/ https://www.ncbi.nlm.nih.gov/pubmed/33557818 http://dx.doi.org/10.1186/s12911-020-01359-9 |
Ejemplares similares
-
Interpretable time-aware and co-occurrence-aware network for medical prediction
por: Sun, Chenxi, et al.
Publicado: (2021) -
Continuous diagnosis and prognosis by controlling the update process of deep neural networks
por: Sun, Chenxi, et al.
Publicado: (2023) -
Predicting future climate at high spatial and temporal resolution
por: Maclean, Ilya M. D.
Publicado: (2019) -
COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet
por: Saood, Adnan, et al.
Publicado: (2021) -
Pheno‐Deep Counter: a unified and versatile deep learning architecture for leaf counting
por: Giuffrida, Mario Valerio, et al.
Publicado: (2018)