Cargando…
TMPSS: A Deep Learning-Based Predictor for Secondary Structure and Topology Structure Prediction of Alpha-Helical Transmembrane Proteins
Alpha transmembrane proteins (αTMPs) profoundly affect many critical biological processes and are major drug targets due to their pivotal protein functions. At present, even though the non-transmembrane secondary structures are highly relevant to the biological functions of αTMPs along with their tr...
Autores principales: | Liu, Zhe, Gong, Yingli, Bao, Yihang, Guo, Yuanzhao, Wang, Han, Lin, Guan Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7869861/ https://www.ncbi.nlm.nih.gov/pubmed/33569377 http://dx.doi.org/10.3389/fbioe.2020.629937 |
Ejemplares similares
-
Research on biomimetic design and impact characteristics of periodic multilayer helical structures
por: Liu, Yu-Xi, et al.
Publicado: (2023) -
Structure, Function, and Propagation of Information across Living Two, Four, and Eight Node Degree Topologies
por: Alagapan, Sankaraleengam, et al.
Publicado: (2016) -
HMM_RA: An Improved Method for Alpha-Helical Transmembrane Protein Topology Prediction
por: Hu, Jing, et al.
Publicado: (2008) -
Notch Transmembrane Domain: Secondary Structure and
Topology
por: Deatherage, Catherine L., et al.
Publicado: (2015) -
Editorial: Feature Representation and Learning Methods With Applications in Protein Secondary Structure
por: Yan, Ni, et al.
Publicado: (2021)