Cargando…
Voting-based integration algorithm improves causal network learning from interventional and observational data: An application to cell signaling network inference
In order to increase statistical power for learning a causal network, data are often pooled from multiple observational and interventional experiments. However, if the direct effects of interventions are uncertain, multi-experiment data pooling can result in false causal discoveries. We present a ne...
Autores principales: | Sinha, Meghamala, Tadepalli, Prasad, Ramsey, Stephen A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7869988/ https://www.ncbi.nlm.nih.gov/pubmed/33556096 http://dx.doi.org/10.1371/journal.pone.0245776 |
Ejemplares similares
-
Machine Learning for Causal Inference in Biological Networks: Perspectives of This Challenge
por: Lecca, Paola
Publicado: (2021) -
Inferring and quantifying causality in neuronal networks
por: Chicharro, Daniel, et al.
Publicado: (2011) -
Corrigendum: Machine Learning for Causal Inference in Biological Networks: Perspectives of This Challenge
por: Lecca, Paola
Publicado: (2022) -
Causal network inference using biochemical kinetics
por: Oates, Chris J., et al.
Publicado: (2014) -
Noise-Driven Causal Inference in Biomolecular Networks
por: Prill, Robert J., et al.
Publicado: (2015)