Cargando…
Generalized Linear Model with Elastic Net Regularization and Convolutional Neural Network for Evaluating Aphanomyces Root Rot Severity in Lentil
Phenomics technologies allow quantitative assessment of phenotypes across a larger number of plant genotypes compared to traditional phenotyping approaches. The utilization of such technologies has enabled the generation of multidimensional plant traits creating big datasets. However, to harness the...
Autores principales: | Marzougui, Afef, Ma, Yu, McGee, Rebecca J., Khot, Lav R., Sankaran, Sindhuja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870103/ https://www.ncbi.nlm.nih.gov/pubmed/33575665 http://dx.doi.org/10.34133/2020/2393062 |
Ejemplares similares
-
Advanced Imaging for Quantitative Evaluation of Aphanomyces Root Rot Resistance in Lentil
por: Marzougui, Afef, et al.
Publicado: (2019) -
Dissecting the Genetic Architecture of Aphanomyces Root Rot Resistance in Lentil by QTL Mapping and Genome-Wide Association Study
por: Ma, Yu, et al.
Publicado: (2020) -
Evaluation of Effective Class-Balancing Techniques for CNN-Based Assessment of Aphanomyces Root Rot Resistance in Pea (Pisum sativum L.)
por: Divyanth, L. G., et al.
Publicado: (2022) -
Effects of Lentil Genotype on the Colonization of Beneficial Trichoderma Species and Biocontrol of Aphanomyces Root Rot
por: Bazghaleh, Navid, et al.
Publicado: (2020) -
Remote sensing for field pea yield estimation: A study of multi-scale data fusion approaches in phenomics
por: Marzougui, Afef, et al.
Publicado: (2023)