Cargando…

Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1-Mediated Mitochondrial Fission after Cardiac Arrest-Induced Myocardial Damage

Myocardial injury after cardiac arrest (CA) often results in severe myocardial dysfunction and death involving mitochondrial dysfunction. Here, we sought to investigate whether baicalin, a natural flavonoid compound, exerts cardioprotection against CA-induced injury via regulating mitochondrial dysf...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Jun, Chen, Hui, Qin, Jiahong, Chen, Nan, Lu, Shiqi, Jin, Jun, Li, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870315/
https://www.ncbi.nlm.nih.gov/pubmed/33603953
http://dx.doi.org/10.1155/2021/8865762
_version_ 1783648793740181504
author Wu, Jun
Chen, Hui
Qin, Jiahong
Chen, Nan
Lu, Shiqi
Jin, Jun
Li, Yi
author_facet Wu, Jun
Chen, Hui
Qin, Jiahong
Chen, Nan
Lu, Shiqi
Jin, Jun
Li, Yi
author_sort Wu, Jun
collection PubMed
description Myocardial injury after cardiac arrest (CA) often results in severe myocardial dysfunction and death involving mitochondrial dysfunction. Here, we sought to investigate whether baicalin, a natural flavonoid compound, exerts cardioprotection against CA-induced injury via regulating mitochondrial dysfunction. We subjected the rats to asphyxia CA after a daily baicalin treatment for 4 weeks. After the return of spontaneous circulation, baicalin treatment significantly improved cardiac function performance, elevated survival rate from 35% to 75%, prevented necrosis and apoptosis in the myocardium, which was accompanied by reduced phosphorylation of Drp1 at serine 616, inhibited Drp1 translocation to the mitochondria and mitochondrial fission, and improved mitochondrial function. In H9c2 cells subjected to simulated ischemia/reperfusion, increased phosphorylation of Drp1 at serine 616 and subsequently enhanced mitochondrial Drp1 translocation as well as mitochondrial fission, augmented cardiomyocyte death, increased reactive oxygen species production, released cytochrome c from mitochondria and injured mitochondrial respiration were efficiently improved by baicalin and Drp1 specific inhibitor with Mdivi-1. Furthermore, overexpression of Drp1 augmented excessive mitochondrial fission and abolished baicalin-afforded cardioprotection, indicating that the protective impacts of baicalin are linked to the inhibition of Drp1. Altogether, our findings disclose for the first time that baicalin offers cardioprotection against ischemic myocardial injury after CA by inhibiting Drp1-mediated mitochondrial fission. Baicalin might be a prospective therapy for the treatment of post-CA myocardial injury.
format Online
Article
Text
id pubmed-7870315
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-78703152021-02-17 Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1-Mediated Mitochondrial Fission after Cardiac Arrest-Induced Myocardial Damage Wu, Jun Chen, Hui Qin, Jiahong Chen, Nan Lu, Shiqi Jin, Jun Li, Yi Oxid Med Cell Longev Research Article Myocardial injury after cardiac arrest (CA) often results in severe myocardial dysfunction and death involving mitochondrial dysfunction. Here, we sought to investigate whether baicalin, a natural flavonoid compound, exerts cardioprotection against CA-induced injury via regulating mitochondrial dysfunction. We subjected the rats to asphyxia CA after a daily baicalin treatment for 4 weeks. After the return of spontaneous circulation, baicalin treatment significantly improved cardiac function performance, elevated survival rate from 35% to 75%, prevented necrosis and apoptosis in the myocardium, which was accompanied by reduced phosphorylation of Drp1 at serine 616, inhibited Drp1 translocation to the mitochondria and mitochondrial fission, and improved mitochondrial function. In H9c2 cells subjected to simulated ischemia/reperfusion, increased phosphorylation of Drp1 at serine 616 and subsequently enhanced mitochondrial Drp1 translocation as well as mitochondrial fission, augmented cardiomyocyte death, increased reactive oxygen species production, released cytochrome c from mitochondria and injured mitochondrial respiration were efficiently improved by baicalin and Drp1 specific inhibitor with Mdivi-1. Furthermore, overexpression of Drp1 augmented excessive mitochondrial fission and abolished baicalin-afforded cardioprotection, indicating that the protective impacts of baicalin are linked to the inhibition of Drp1. Altogether, our findings disclose for the first time that baicalin offers cardioprotection against ischemic myocardial injury after CA by inhibiting Drp1-mediated mitochondrial fission. Baicalin might be a prospective therapy for the treatment of post-CA myocardial injury. Hindawi 2021-02-01 /pmc/articles/PMC7870315/ /pubmed/33603953 http://dx.doi.org/10.1155/2021/8865762 Text en Copyright © 2021 Jun Wu et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Wu, Jun
Chen, Hui
Qin, Jiahong
Chen, Nan
Lu, Shiqi
Jin, Jun
Li, Yi
Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1-Mediated Mitochondrial Fission after Cardiac Arrest-Induced Myocardial Damage
title Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1-Mediated Mitochondrial Fission after Cardiac Arrest-Induced Myocardial Damage
title_full Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1-Mediated Mitochondrial Fission after Cardiac Arrest-Induced Myocardial Damage
title_fullStr Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1-Mediated Mitochondrial Fission after Cardiac Arrest-Induced Myocardial Damage
title_full_unstemmed Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1-Mediated Mitochondrial Fission after Cardiac Arrest-Induced Myocardial Damage
title_short Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1-Mediated Mitochondrial Fission after Cardiac Arrest-Induced Myocardial Damage
title_sort baicalin improves cardiac outcome and survival by suppressing drp1-mediated mitochondrial fission after cardiac arrest-induced myocardial damage
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870315/
https://www.ncbi.nlm.nih.gov/pubmed/33603953
http://dx.doi.org/10.1155/2021/8865762
work_keys_str_mv AT wujun baicalinimprovescardiacoutcomeandsurvivalbysuppressingdrp1mediatedmitochondrialfissionaftercardiacarrestinducedmyocardialdamage
AT chenhui baicalinimprovescardiacoutcomeandsurvivalbysuppressingdrp1mediatedmitochondrialfissionaftercardiacarrestinducedmyocardialdamage
AT qinjiahong baicalinimprovescardiacoutcomeandsurvivalbysuppressingdrp1mediatedmitochondrialfissionaftercardiacarrestinducedmyocardialdamage
AT chennan baicalinimprovescardiacoutcomeandsurvivalbysuppressingdrp1mediatedmitochondrialfissionaftercardiacarrestinducedmyocardialdamage
AT lushiqi baicalinimprovescardiacoutcomeandsurvivalbysuppressingdrp1mediatedmitochondrialfissionaftercardiacarrestinducedmyocardialdamage
AT jinjun baicalinimprovescardiacoutcomeandsurvivalbysuppressingdrp1mediatedmitochondrialfissionaftercardiacarrestinducedmyocardialdamage
AT liyi baicalinimprovescardiacoutcomeandsurvivalbysuppressingdrp1mediatedmitochondrialfissionaftercardiacarrestinducedmyocardialdamage