Cargando…
COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet
BACKGROUND: Currently, there is an urgent need for efficient tools to assess the diagnosis of COVID-19 patients. In this paper, we present feasible solutions for detecting and labeling infected tissues on CT lung images of such patients. Two structurally-different deep learning techniques, SegNet an...
Autores principales: | Saood, Adnan, Hatem, Iyad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870362/ https://www.ncbi.nlm.nih.gov/pubmed/33557772 http://dx.doi.org/10.1186/s12880-020-00529-5 |
Ejemplares similares
-
SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022) -
Liver Tumor Segmentation in CT Scans Using Modified SegNet
por: Almotairi, Sultan, et al.
Publicado: (2020) -
Retinal Vessel Automatic Segmentation Using SegNet
por: Xu, Xiaomei, et al.
Publicado: (2022) -
Retracted: Retinal Vessel Automatic Segmentation Using SegNet
por: Methods in Medicine, Computational and Mathematical
Publicado: (2023) -
Multi-Scale Squeeze U-SegNet with Multi Global Attention for Brain MRI Segmentation
por: Dayananda, Chaitra, et al.
Publicado: (2021)