Cargando…
Acute, reproductive, and developmental toxicity of essential oils assessed with alternative in vitro and in vivo systems
Essential oils (EOs) have attracted increased interest for different applications such as food preservatives, feed additives and ingredients in cosmetics. Due to their reported variable composition of components, they might be acutely toxic to humans and animals in small amounts. Despite the necessi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870616/ https://www.ncbi.nlm.nih.gov/pubmed/33159585 http://dx.doi.org/10.1007/s00204-020-02945-6 |
_version_ | 1783648840361967616 |
---|---|
author | Lanzerstorfer, Peter Sandner, Georg Pitsch, Johannes Mascher, Bianca Aumiller, Tobias Weghuber, Julian |
author_facet | Lanzerstorfer, Peter Sandner, Georg Pitsch, Johannes Mascher, Bianca Aumiller, Tobias Weghuber, Julian |
author_sort | Lanzerstorfer, Peter |
collection | PubMed |
description | Essential oils (EOs) have attracted increased interest for different applications such as food preservatives, feed additives and ingredients in cosmetics. Due to their reported variable composition of components, they might be acutely toxic to humans and animals in small amounts. Despite the necessity, rigorous toxicity testing in terms of safety evaluation has not been reported so far, especially using alternatives to animal models. Here, we provide a strategy by use of alternative in vitro (cell cultures) and in vivo (Caenorhabditis elegans, hen’s egg test) approaches for detailed investigation of the impact of commonly used rosemary, citrus and eucalyptus essential oil on acute, developmental and reproductive toxicity as well as on mucous membrane irritation. In general, all EOs under study exhibited a comparable impact on measured parameters, with a slightly increased toxic potential of rosemary oil. In vitro cell culture results indicated a concentration-dependent decrease of cell viability for all EOs, with mean IC(50) values ranging from 0.08 to 0.17% [v/v]. Similar results were obtained for the C. elegans model when using a sensitized bus-5 mutant strain, with a mean LC(50) value of 0.42% [v/v]. In wild-type nematodes, approximately tenfold higher LC(50) values were detected. C. elegans development and reproduction was already significantly inhibited at concentrations of 0.5% (wild-type) and 0.1% (bus-5) [v/v] of EO, respectively. Gene expression analysis revealed a significant upregulation of xenobiotic and oxidative stress genes such as cyp-14a3, gst-4, gpx-6 and sod-3. Furthermore, all three EOs under study showed an increased short-time mucous membrane irritation potential, already at 0.5% [v/v] of EO. Finally, GC–MS analysis was performed to quantitate the relative concentration of the most prominent EO compounds. In conclusion, our results demonstrate that EOs can exhibit severe toxic properties, already at low concentrations. Therefore, a detailed toxicological assessment is highly recommended for each EO and single intended application. |
format | Online Article Text |
id | pubmed-7870616 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-78706162021-02-16 Acute, reproductive, and developmental toxicity of essential oils assessed with alternative in vitro and in vivo systems Lanzerstorfer, Peter Sandner, Georg Pitsch, Johannes Mascher, Bianca Aumiller, Tobias Weghuber, Julian Arch Toxicol Reproductive Toxicology Essential oils (EOs) have attracted increased interest for different applications such as food preservatives, feed additives and ingredients in cosmetics. Due to their reported variable composition of components, they might be acutely toxic to humans and animals in small amounts. Despite the necessity, rigorous toxicity testing in terms of safety evaluation has not been reported so far, especially using alternatives to animal models. Here, we provide a strategy by use of alternative in vitro (cell cultures) and in vivo (Caenorhabditis elegans, hen’s egg test) approaches for detailed investigation of the impact of commonly used rosemary, citrus and eucalyptus essential oil on acute, developmental and reproductive toxicity as well as on mucous membrane irritation. In general, all EOs under study exhibited a comparable impact on measured parameters, with a slightly increased toxic potential of rosemary oil. In vitro cell culture results indicated a concentration-dependent decrease of cell viability for all EOs, with mean IC(50) values ranging from 0.08 to 0.17% [v/v]. Similar results were obtained for the C. elegans model when using a sensitized bus-5 mutant strain, with a mean LC(50) value of 0.42% [v/v]. In wild-type nematodes, approximately tenfold higher LC(50) values were detected. C. elegans development and reproduction was already significantly inhibited at concentrations of 0.5% (wild-type) and 0.1% (bus-5) [v/v] of EO, respectively. Gene expression analysis revealed a significant upregulation of xenobiotic and oxidative stress genes such as cyp-14a3, gst-4, gpx-6 and sod-3. Furthermore, all three EOs under study showed an increased short-time mucous membrane irritation potential, already at 0.5% [v/v] of EO. Finally, GC–MS analysis was performed to quantitate the relative concentration of the most prominent EO compounds. In conclusion, our results demonstrate that EOs can exhibit severe toxic properties, already at low concentrations. Therefore, a detailed toxicological assessment is highly recommended for each EO and single intended application. Springer Berlin Heidelberg 2020-11-07 2021 /pmc/articles/PMC7870616/ /pubmed/33159585 http://dx.doi.org/10.1007/s00204-020-02945-6 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Reproductive Toxicology Lanzerstorfer, Peter Sandner, Georg Pitsch, Johannes Mascher, Bianca Aumiller, Tobias Weghuber, Julian Acute, reproductive, and developmental toxicity of essential oils assessed with alternative in vitro and in vivo systems |
title | Acute, reproductive, and developmental toxicity of essential oils assessed with alternative in vitro and in vivo systems |
title_full | Acute, reproductive, and developmental toxicity of essential oils assessed with alternative in vitro and in vivo systems |
title_fullStr | Acute, reproductive, and developmental toxicity of essential oils assessed with alternative in vitro and in vivo systems |
title_full_unstemmed | Acute, reproductive, and developmental toxicity of essential oils assessed with alternative in vitro and in vivo systems |
title_short | Acute, reproductive, and developmental toxicity of essential oils assessed with alternative in vitro and in vivo systems |
title_sort | acute, reproductive, and developmental toxicity of essential oils assessed with alternative in vitro and in vivo systems |
topic | Reproductive Toxicology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870616/ https://www.ncbi.nlm.nih.gov/pubmed/33159585 http://dx.doi.org/10.1007/s00204-020-02945-6 |
work_keys_str_mv | AT lanzerstorferpeter acutereproductiveanddevelopmentaltoxicityofessentialoilsassessedwithalternativeinvitroandinvivosystems AT sandnergeorg acutereproductiveanddevelopmentaltoxicityofessentialoilsassessedwithalternativeinvitroandinvivosystems AT pitschjohannes acutereproductiveanddevelopmentaltoxicityofessentialoilsassessedwithalternativeinvitroandinvivosystems AT mascherbianca acutereproductiveanddevelopmentaltoxicityofessentialoilsassessedwithalternativeinvitroandinvivosystems AT aumillertobias acutereproductiveanddevelopmentaltoxicityofessentialoilsassessedwithalternativeinvitroandinvivosystems AT weghuberjulian acutereproductiveanddevelopmentaltoxicityofessentialoilsassessedwithalternativeinvitroandinvivosystems |