Cargando…

Influence of embedding media on the accuracy of working length determination by means of apex locator: an ex vivo study

The aim of this research was to determine ex vivo the influence on accuracy of five different embedding media, for investigative and educational purposes, and one electronic apex locator. 110 human extracted mature roots of permanent single-rooted human teeth were used. The roots were embedded in al...

Descripción completa

Detalles Bibliográficos
Autores principales: Wolf, Thomas Gerhard, Krauß-Mironjuk, Anna, Wierichs, Richard Johannes, Briseño-Marroquín, Benjamín
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870820/
https://www.ncbi.nlm.nih.gov/pubmed/33558636
http://dx.doi.org/10.1038/s41598-021-82942-6
Descripción
Sumario:The aim of this research was to determine ex vivo the influence on accuracy of five different embedding media, for investigative and educational purposes, and one electronic apex locator. 110 human extracted mature roots of permanent single-rooted human teeth were used. The roots were embedded in alginate, stick sponge, 2% agar–agar and 6% and 12% gelatin. The actual working length to the physiological foramen was determined under a stereo-microscope (16 ×) and the electronic working lengths with the Elements Diagnostic Unit and a K-file ISO 10. The accuracy ranges of the accumulated measurements, when allowing a ± 0.5 mm tolerance, went from 98.2% (6% and 12% gelatin), 93.7% (alginate), 92.8% (2% agar–agar) to 91.7% (sponge). The exact measurements at the physiological foramen ranged from 80.0% (6% gelatin), 76.5% (2% agar–agar), 71.8% (12% gelatin), 68.2% (alginate) to 64.5% (sponge). Although relatively seldom (n = 24), measurements with deviations of more than ± 0.5 mm were also observed; thus, the accuracy of the working length determination results per se can be considered as clinically acceptable. The results of this research allow a recommendation of the investigated embedding media for electronic working length determination models for educational and research purposes in endodontics.