Cargando…
Ubiquitous quantum scarring does not prevent ergodicity
In a classically chaotic system that is ergodic, any trajectory will be arbitrarily close to any point of the available phase space after a long time, filling it uniformly. Using Born’s rules to connect quantum states with probabilities, one might then expect that all quantum states in the chaotic r...
Autores principales: | Pilatowsky-Cameo, Saúl, Villaseñor, David, Bastarrachea-Magnani, Miguel A., Lerma-Hernández, Sergio, Santos, Lea F., Hirsch, Jorge G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870831/ https://www.ncbi.nlm.nih.gov/pubmed/33558492 http://dx.doi.org/10.1038/s41467-021-21123-5 |
Ejemplares similares
-
Chaos and Thermalization in the Spin-Boson Dicke Model
por: Villaseñor, David, et al.
Publicado: (2022) -
Quantum Unique Ergodicity for Cayley Graphs of Quasirandom Groups
por: Magee, Michael, et al.
Publicado: (2023) -
Ergodic Theory
por: Denker, Manfred, et al.
Publicado: (1979) -
Ergodic theory /
por: Petersen, Karl Endel, 1943-
Publicado: (1983) -
Ergodic theorems
por: Krengel, Ulrich, et al.
Publicado: (1985)