Cargando…

Cryo-EM reveals structural breaks in a patient-derived amyloid fibril from systemic AL amyloidosis

Systemic AL amyloidosis is a debilitating and potentially fatal disease that arises from the misfolding and fibrillation of immunoglobulin light chains (LCs). The disease is patient-specific with essentially each patient possessing a unique LC sequence. In this study, we present two ex vivo fibril s...

Descripción completa

Detalles Bibliográficos
Autores principales: Radamaker, Lynn, Baur, Julian, Huhn, Stefanie, Haupt, Christian, Hegenbart, Ute, Schönland, Stefan, Bansal, Akanksha, Schmidt, Matthias, Fändrich, Marcus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870857/
https://www.ncbi.nlm.nih.gov/pubmed/33558536
http://dx.doi.org/10.1038/s41467-021-21126-2
Descripción
Sumario:Systemic AL amyloidosis is a debilitating and potentially fatal disease that arises from the misfolding and fibrillation of immunoglobulin light chains (LCs). The disease is patient-specific with essentially each patient possessing a unique LC sequence. In this study, we present two ex vivo fibril structures of a λ3 LC. The fibrils were extracted from the explanted heart of a patient (FOR005) and consist of 115-residue fibril proteins, mainly from the LC variable domain. The fibril structures imply that a 180° rotation around the disulfide bond and a major unfolding step are necessary for fibrils to form. The two fibril structures show highly similar fibril protein folds, differing in only a 12-residue segment. Remarkably, the two structures do not represent separate fibril morphologies, as they can co-exist at different z-axial positions within the same fibril. Our data imply the presence of structural breaks at the interface of the two structural forms.