Cargando…
A CRISPR-Cas9 based shuffle system for endogenous histone H3 and H4 combinatorial mutagenesis
Post-translational modifications of histone proteins greatly impact gene expression and cell fate decisions in eukaryotes. To study these, it is important to develop a convenient, multiplex, and efficient method to precisely introduce mutations to histones. Because eukaryotic cells usually contain m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870972/ https://www.ncbi.nlm.nih.gov/pubmed/33558622 http://dx.doi.org/10.1038/s41598-021-82774-4 |
Sumario: | Post-translational modifications of histone proteins greatly impact gene expression and cell fate decisions in eukaryotes. To study these, it is important to develop a convenient, multiplex, and efficient method to precisely introduce mutations to histones. Because eukaryotic cells usually contain multiple copies of histone genes, it is a challenge to mutate all histones at the same time by the traditional homologous recombination method. Here, we developed a CRISPR-Cas9 based shuffle system in Saccharomyces cerevisiae, to generate point mutations on both endogenous histone H3 and H4 genes in a rapid, seamless and multiplex fashion. Using this method, we generated yeast strains containing histone triple H3–K4R–K36R–K79R mutants and histone combinatorial H3–K56Q–H4–K59A double mutants with high efficiencies (70–80%). This CRISPR-Cas9 based mutagenesis system could be an invaluable tool to the epigenetics field. |
---|