Cargando…

Insight into an unsupervised two-step sparse transfer learning algorithm for speech diagnosis of Parkinson’s disease

Speech diagnosis of Parkinson’s disease (PD) as a non-invasive and simple diagnosis method is particularly worth exploring. However, the number of samples of speech-based PD is relatively small, and there exist discrepancies in the distribution between subjects. In order to solve the two problems, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yongming, Zhang, Xinyue, Wang, Pin, Zhang, Xiaoheng, Liu, Yuchuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer London 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7871026/
https://www.ncbi.nlm.nih.gov/pubmed/33584015
http://dx.doi.org/10.1007/s00521-021-05741-0
Descripción
Sumario:Speech diagnosis of Parkinson’s disease (PD) as a non-invasive and simple diagnosis method is particularly worth exploring. However, the number of samples of speech-based PD is relatively small, and there exist discrepancies in the distribution between subjects. In order to solve the two problems, a novel unsupervised two-step sparse transfer learning is proposed in this paper to tackle with PD speech diagnosis. In the first step, convolution sparse coding with the coordinate selection of samples and features is designed to learn speech structure from the source domain to replenish sample information of the target domain. In the second step, joint local structure distribution alignment is designed to maintain the neighbor relationship between the respective samples of the training set and test set, and reduce the distribution difference between the two domains at the same time. Two representative public PD speech datasets and one real-world PD speech dataset were exploited to verify the proposed method on PD speech diagnosis. Experimental results demonstrate that each step of the proposed method has a positive effect on the PD speech classification results, and it also delivers superior performance over the existing relative methods.