Cargando…
Clinician checklist for assessing suitability of machine learning applications in healthcare
Machine learning algorithms are being used to screen and diagnose disease, prognosticate and predict therapeutic responses. Hundreds of new algorithms are being developed, but whether they improve clinical decision making and patient outcomes remains uncertain. If clinicians are to use algorithms, t...
Autores principales: | Scott, Ian, Carter, Stacy, Coiera, Enrico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7871244/ https://www.ncbi.nlm.nih.gov/pubmed/33547086 http://dx.doi.org/10.1136/bmjhci-2020-100251 |
Ejemplares similares
-
How machine learning is embedded to support clinician decision making: an analysis of FDA-approved medical devices
por: Lyell, David, et al.
Publicado: (2021) -
Exploring stakeholder attitudes towards AI in clinical practice
por: Scott, Ian A, et al.
Publicado: (2021) -
Presenting artificial intelligence, deep learning, and machine learning studies to clinicians and healthcare stakeholders: an introductory reference with a guideline and a Clinical AI Research (CAIR) checklist proposal
por: Olczak, Jakub, et al.
Publicado: (2021) -
A Global Health Research Checklist for clinicians
por: Sawaya, Rasha D., et al.
Publicado: (2018) -
A clinician’s guide to understanding and critically appraising machine learning studies: a checklist for Ruling Out Bias Using Standard Tools in Machine Learning (ROBUST-ML)
por: Al-Zaiti, Salah S, et al.
Publicado: (2022)