Cargando…
Cardiac function dependence on carbon monoxide
Nitric oxide, studied to evaluate its role in cardiovascular physiology, has cardioprotective and therapeutic effects in cellular signaling, mitochondrial function, and in regulating inflammatory processes. Heme oxygenase (major role in catabolism of heme into biliverdin, carbon monoxide (CO), and i...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7871938/ https://www.ncbi.nlm.nih.gov/pubmed/32189668 http://dx.doi.org/10.4103/2045-9912.279982 |
_version_ | 1783649111811031040 |
---|---|
author | Mahan, Vicki L. |
author_facet | Mahan, Vicki L. |
author_sort | Mahan, Vicki L. |
collection | PubMed |
description | Nitric oxide, studied to evaluate its role in cardiovascular physiology, has cardioprotective and therapeutic effects in cellular signaling, mitochondrial function, and in regulating inflammatory processes. Heme oxygenase (major role in catabolism of heme into biliverdin, carbon monoxide (CO), and iron) has similar effects as well. CO has been suggested as the molecule that is responsible for many of the above mentioned cytoprotective and therapeutic pathways as CO is a signaling molecule in the control of physiological functions. This is counterintuitive as toxic effects are related to its binding to hemoglobin. However, CO is normally produced in the body. Experimental evidence indicates that this toxic gas, CO, exerts cytoprotective properties related to cellular stress including the heart and is being assessed for its cytoprotective and cytotherapeutic properties. While survival of adult cardiomyocytes depends on oxidative phosphorylation (survival and resulting cardiac function is impaired by mitochondrial damage), mitochondrial biogenesis is modified by the heme oxygenase-1/CO system and can result in promotion of mitochondrial biogenesis by associating mitochondrial redox status to the redox-active transcription factors. It has been suggested that the heme oxygenase-1/CO system is important in differentiation of embryonic stem cells and maturation of cardiomyocytes which is thought to mitigate progression of degenerative cardiovascular diseases. Effects on other cardiac cells are being studied. Acute exposure to air pollution (and, therefore, CO) is associated with cardiovascular mortality, myocardial infarction, and heart failure, but changes in the endogenous heme oxygenase-1 system (and, thereby, CO) positively affect cardiovascular health. We will review the effect of CO on heart health and function in this article. |
format | Online Article Text |
id | pubmed-7871938 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Wolters Kluwer - Medknow |
record_format | MEDLINE/PubMed |
spelling | pubmed-78719382021-02-10 Cardiac function dependence on carbon monoxide Mahan, Vicki L. Med Gas Res Review Nitric oxide, studied to evaluate its role in cardiovascular physiology, has cardioprotective and therapeutic effects in cellular signaling, mitochondrial function, and in regulating inflammatory processes. Heme oxygenase (major role in catabolism of heme into biliverdin, carbon monoxide (CO), and iron) has similar effects as well. CO has been suggested as the molecule that is responsible for many of the above mentioned cytoprotective and therapeutic pathways as CO is a signaling molecule in the control of physiological functions. This is counterintuitive as toxic effects are related to its binding to hemoglobin. However, CO is normally produced in the body. Experimental evidence indicates that this toxic gas, CO, exerts cytoprotective properties related to cellular stress including the heart and is being assessed for its cytoprotective and cytotherapeutic properties. While survival of adult cardiomyocytes depends on oxidative phosphorylation (survival and resulting cardiac function is impaired by mitochondrial damage), mitochondrial biogenesis is modified by the heme oxygenase-1/CO system and can result in promotion of mitochondrial biogenesis by associating mitochondrial redox status to the redox-active transcription factors. It has been suggested that the heme oxygenase-1/CO system is important in differentiation of embryonic stem cells and maturation of cardiomyocytes which is thought to mitigate progression of degenerative cardiovascular diseases. Effects on other cardiac cells are being studied. Acute exposure to air pollution (and, therefore, CO) is associated with cardiovascular mortality, myocardial infarction, and heart failure, but changes in the endogenous heme oxygenase-1 system (and, thereby, CO) positively affect cardiovascular health. We will review the effect of CO on heart health and function in this article. Wolters Kluwer - Medknow 2020-03-13 /pmc/articles/PMC7871938/ /pubmed/32189668 http://dx.doi.org/10.4103/2045-9912.279982 Text en Copyright: © 2020 Medical Gas Research http://creativecommons.org/licenses/by-nc-sa/4.0 This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Review Mahan, Vicki L. Cardiac function dependence on carbon monoxide |
title | Cardiac function dependence on carbon monoxide |
title_full | Cardiac function dependence on carbon monoxide |
title_fullStr | Cardiac function dependence on carbon monoxide |
title_full_unstemmed | Cardiac function dependence on carbon monoxide |
title_short | Cardiac function dependence on carbon monoxide |
title_sort | cardiac function dependence on carbon monoxide |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7871938/ https://www.ncbi.nlm.nih.gov/pubmed/32189668 http://dx.doi.org/10.4103/2045-9912.279982 |
work_keys_str_mv | AT mahanvickil cardiacfunctiondependenceoncarbonmonoxide |