Cargando…

Viral gene delivery vectors: the next generation medicines for immune-related diseases

Viruses have evolved to efficiently express their genes in host cells, which makes them ideally suited as gene delivery vectors for gene and immunotherapies. Replication competent (RC) viral vectors encoding foreign or self-proteins induce strong T-cell responses that can be used for the development...

Descripción completa

Detalles Bibliográficos
Autores principales: De Haan, Peter, Van Diemen, Ferdy R., Toscano, Miguel G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7872028/
https://www.ncbi.nlm.nih.gov/pubmed/32412865
http://dx.doi.org/10.1080/21645515.2020.1757989
Descripción
Sumario:Viruses have evolved to efficiently express their genes in host cells, which makes them ideally suited as gene delivery vectors for gene and immunotherapies. Replication competent (RC) viral vectors encoding foreign or self-proteins induce strong T-cell responses that can be used for the development of effective cancer treatments. Replication-defective (RD) viral vectors encoding self-proteins are non-immunogenic when introduced in a host naïve for the cognate virus. RD viral vectors can be used to develop gene replacement therapies for genetic disorders and tolerization therapies for autoimmune diseases and allergies. Degenerative/inflammatory diseases are associated with chronic inflammation and immune responses that damage the tissues involved. These diseases therefore strongly resemble autoimmune diseases. This review deals with the use of RC and RD viral vectors for unraveling the pathogenesis of immune-related diseases and their application to the development of the next generation prophylactics and therapeutics for todays’ major diseases.