Cargando…
A pre-training and self-training approach for biomedical named entity recognition
Named entity recognition (NER) is a key component of many scientific literature mining tasks, such as information retrieval, information extraction, and question answering; however, many modern approaches require large amounts of labeled training data in order to be effective. This severely limits t...
Autores principales: | Gao, Shang, Kotevska, Olivera, Sorokine, Alexandre, Christian, J. Blair |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7872256/ https://www.ncbi.nlm.nih.gov/pubmed/33561139 http://dx.doi.org/10.1371/journal.pone.0246310 |
Ejemplares similares
-
A Kernel-Based Approach for Biomedical Named Entity Recognition
por: Patra, Rakesh, et al.
Publicado: (2013) -
Various criteria in the evaluation of biomedical named entity recognition
por: Tsai, Richard Tzong-Han, et al.
Publicado: (2006) -
Comparison of named entity recognition methodologies in biomedical documents
por: Song, Hye-Jeong, et al.
Publicado: (2018) -
Towards reliable named entity recognition in the biomedical domain
por: Giorgi, John M, et al.
Publicado: (2020) -
Improving biomedical named entity recognition with syntactic information
por: Tian, Yuanhe, et al.
Publicado: (2020)