Cargando…

A Valleytronic Diamond Transistor: Electrostatic Control of Valley Currents and Charge-State Manipulation of NV Centers

[Image: see text] The valley degree of freedom in many-valley semiconductors provides a new paradigm for storing and processing information in valleytronic and quantum-computing applications. Achieving practical devices requires all-electric control of long-lived valley-polarized states, without the...

Descripción completa

Detalles Bibliográficos
Autores principales: Suntornwipat, Nattakarn, Majdi, Saman, Gabrysch, Markus, Kovi, Kiran Kumar, Djurberg, Viktor, Friel, Ian, Twitchen, Daniel J., Isberg, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7872423/
https://www.ncbi.nlm.nih.gov/pubmed/33337898
http://dx.doi.org/10.1021/acs.nanolett.0c04712
_version_ 1783649182478761984
author Suntornwipat, Nattakarn
Majdi, Saman
Gabrysch, Markus
Kovi, Kiran Kumar
Djurberg, Viktor
Friel, Ian
Twitchen, Daniel J.
Isberg, Jan
author_facet Suntornwipat, Nattakarn
Majdi, Saman
Gabrysch, Markus
Kovi, Kiran Kumar
Djurberg, Viktor
Friel, Ian
Twitchen, Daniel J.
Isberg, Jan
author_sort Suntornwipat, Nattakarn
collection PubMed
description [Image: see text] The valley degree of freedom in many-valley semiconductors provides a new paradigm for storing and processing information in valleytronic and quantum-computing applications. Achieving practical devices requires all-electric control of long-lived valley-polarized states, without the use of strong external magnetic fields. Because of the extreme strength of the carbon–carbon bond, diamond possesses exceptionally stable valley states that provide a useful platform for valleytronic devices. Using ultrapure single-crystalline diamond, we demonstrate electrostatic control of valley currents in a dual-gate field-effect transistor, where the electrons are generated with a short ultraviolet pulse. The charge current and the valley current measured at the receiving electrodes are controlled separately by varying the gate voltages. We propose a model to interpret experimental data, based on drift-diffusion equations coupled through rate terms, with the rates computed by microscopic Monte Carlo simulations. As an application, we demonstrate valley-current charge-state modulation of nitrogen-vacancy centers.
format Online
Article
Text
id pubmed-7872423
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-78724232021-02-10 A Valleytronic Diamond Transistor: Electrostatic Control of Valley Currents and Charge-State Manipulation of NV Centers Suntornwipat, Nattakarn Majdi, Saman Gabrysch, Markus Kovi, Kiran Kumar Djurberg, Viktor Friel, Ian Twitchen, Daniel J. Isberg, Jan Nano Lett [Image: see text] The valley degree of freedom in many-valley semiconductors provides a new paradigm for storing and processing information in valleytronic and quantum-computing applications. Achieving practical devices requires all-electric control of long-lived valley-polarized states, without the use of strong external magnetic fields. Because of the extreme strength of the carbon–carbon bond, diamond possesses exceptionally stable valley states that provide a useful platform for valleytronic devices. Using ultrapure single-crystalline diamond, we demonstrate electrostatic control of valley currents in a dual-gate field-effect transistor, where the electrons are generated with a short ultraviolet pulse. The charge current and the valley current measured at the receiving electrodes are controlled separately by varying the gate voltages. We propose a model to interpret experimental data, based on drift-diffusion equations coupled through rate terms, with the rates computed by microscopic Monte Carlo simulations. As an application, we demonstrate valley-current charge-state modulation of nitrogen-vacancy centers. American Chemical Society 2020-12-18 2021-01-13 /pmc/articles/PMC7872423/ /pubmed/33337898 http://dx.doi.org/10.1021/acs.nanolett.0c04712 Text en © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Suntornwipat, Nattakarn
Majdi, Saman
Gabrysch, Markus
Kovi, Kiran Kumar
Djurberg, Viktor
Friel, Ian
Twitchen, Daniel J.
Isberg, Jan
A Valleytronic Diamond Transistor: Electrostatic Control of Valley Currents and Charge-State Manipulation of NV Centers
title A Valleytronic Diamond Transistor: Electrostatic Control of Valley Currents and Charge-State Manipulation of NV Centers
title_full A Valleytronic Diamond Transistor: Electrostatic Control of Valley Currents and Charge-State Manipulation of NV Centers
title_fullStr A Valleytronic Diamond Transistor: Electrostatic Control of Valley Currents and Charge-State Manipulation of NV Centers
title_full_unstemmed A Valleytronic Diamond Transistor: Electrostatic Control of Valley Currents and Charge-State Manipulation of NV Centers
title_short A Valleytronic Diamond Transistor: Electrostatic Control of Valley Currents and Charge-State Manipulation of NV Centers
title_sort valleytronic diamond transistor: electrostatic control of valley currents and charge-state manipulation of nv centers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7872423/
https://www.ncbi.nlm.nih.gov/pubmed/33337898
http://dx.doi.org/10.1021/acs.nanolett.0c04712
work_keys_str_mv AT suntornwipatnattakarn avalleytronicdiamondtransistorelectrostaticcontrolofvalleycurrentsandchargestatemanipulationofnvcenters
AT majdisaman avalleytronicdiamondtransistorelectrostaticcontrolofvalleycurrentsandchargestatemanipulationofnvcenters
AT gabryschmarkus avalleytronicdiamondtransistorelectrostaticcontrolofvalleycurrentsandchargestatemanipulationofnvcenters
AT kovikirankumar avalleytronicdiamondtransistorelectrostaticcontrolofvalleycurrentsandchargestatemanipulationofnvcenters
AT djurbergviktor avalleytronicdiamondtransistorelectrostaticcontrolofvalleycurrentsandchargestatemanipulationofnvcenters
AT frielian avalleytronicdiamondtransistorelectrostaticcontrolofvalleycurrentsandchargestatemanipulationofnvcenters
AT twitchendanielj avalleytronicdiamondtransistorelectrostaticcontrolofvalleycurrentsandchargestatemanipulationofnvcenters
AT isbergjan avalleytronicdiamondtransistorelectrostaticcontrolofvalleycurrentsandchargestatemanipulationofnvcenters
AT suntornwipatnattakarn valleytronicdiamondtransistorelectrostaticcontrolofvalleycurrentsandchargestatemanipulationofnvcenters
AT majdisaman valleytronicdiamondtransistorelectrostaticcontrolofvalleycurrentsandchargestatemanipulationofnvcenters
AT gabryschmarkus valleytronicdiamondtransistorelectrostaticcontrolofvalleycurrentsandchargestatemanipulationofnvcenters
AT kovikirankumar valleytronicdiamondtransistorelectrostaticcontrolofvalleycurrentsandchargestatemanipulationofnvcenters
AT djurbergviktor valleytronicdiamondtransistorelectrostaticcontrolofvalleycurrentsandchargestatemanipulationofnvcenters
AT frielian valleytronicdiamondtransistorelectrostaticcontrolofvalleycurrentsandchargestatemanipulationofnvcenters
AT twitchendanielj valleytronicdiamondtransistorelectrostaticcontrolofvalleycurrentsandchargestatemanipulationofnvcenters
AT isbergjan valleytronicdiamondtransistorelectrostaticcontrolofvalleycurrentsandchargestatemanipulationofnvcenters