Cargando…
The chloroplast genome of a unicellular green alga strain isolated from the rubber processing wastewater
Chlorella vulgaris ITBBA3-12 has a role in the purification of the rubber processing wastewater. Its complete chloroplast genome contains 168369 bp, with a G + C content of 33.0%. A total of 147 genes were annotated, including 113 protein-coding genes, three rRNA (rrn23, rrn16, and rrn5) genes, and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7872553/ https://www.ncbi.nlm.nih.gov/pubmed/33659644 http://dx.doi.org/10.1080/23802359.2020.1844090 |
Sumario: | Chlorella vulgaris ITBBA3-12 has a role in the purification of the rubber processing wastewater. Its complete chloroplast genome contains 168369 bp, with a G + C content of 33.0%. A total of 147 genes were annotated, including 113 protein-coding genes, three rRNA (rrn23, rrn16, and rrn5) genes, and 31 tRNA genes. The significant feature of the chloroplast genome is that the genes encoding subunit V (petG), VI (petL), and apocytochrome f (petA) of the cytochrome b6/f complex are in triplicate, which was not observed in the other C. vulgaris strains. Phylogenetic analysis using the chloroplast genomes of Chlorophyta species indicated that ITBBA3-12 is closely related to C. vulgaris strain UTEX259 and NJ-7, and they clustered in the Chlorella lineage. |
---|