Cargando…
Not all biases are bad: equitable and inequitable biases in machine learning and radiology
The application of machine learning (ML) technologies in medicine generally but also in radiology more specifically is hoped to improve clinical processes and the provision of healthcare. A central motivation in this regard is to advance patient treatment by reducing human error and increasing the a...
Autores principales: | Pot, Mirjam, Kieusseyan, Nathalie, Prainsack, Barbara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7872878/ https://www.ncbi.nlm.nih.gov/pubmed/33564955 http://dx.doi.org/10.1186/s13244-020-00955-7 |
Ejemplares similares
-
Reply to Letter to the Editor on “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”
por: Pot, Mirjam, et al.
Publicado: (2021) -
Letter to the editor: “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”
por: Iannessi, Antoine, et al.
Publicado: (2021) -
Racial underrepresentation in dermatological datasets leads to biased machine learning models and inequitable healthcare
por: Kleinberg, Giona, et al.
Publicado: (2022) -
Equitable machine learning counteracts ancestral bias in precision medicine, improving outcomes for all
por: Smith, Leslie A, et al.
Publicado: (2023) -
What are weight bias measures measuring? An evaluation of core
measures of weight bias and weight bias internalisation
por: Stewart, Sarah-Jane F, et al.
Publicado: (2021)