Cargando…
A personalized and evolutionary algorithm for interpretable EEG epilepsy seizure prediction
Seizure prediction may improve the quality of life of patients suffering from drug-resistant epilepsy, which accounts for about 30% of the total epileptic patients. The pre-ictal period determination, characterized by a transitional stage between normal brain activity and seizure, is a critical step...
Autores principales: | Pinto, Mauro. F., Leal, Adriana, Lopes, Fábio, Dourado, António, Martins, Pedro, Teixeira, César A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873127/ https://www.ncbi.nlm.nih.gov/pubmed/33564050 http://dx.doi.org/10.1038/s41598-021-82828-7 |
Ejemplares similares
-
Interpretable EEG seizure prediction using a multiobjective evolutionary algorithm
por: Pinto, Mauro, et al.
Publicado: (2022) -
On the clinical acceptance of black‐box systems for EEG seizure prediction
por: Pinto, Mauro. F., et al.
Publicado: (2022) -
The goal of explaining black boxes in EEG seizure prediction is not to explain models' decisions
por: Pinto, Mauro F., et al.
Publicado: (2023) -
Unsupervised EEG preictal interval identification in patients with drug-resistant epilepsy
por: Leal, Adriana, et al.
Publicado: (2023) -
EPIC: Annotated epileptic EEG independent components for artifact reduction
por: Lopes, Fábio, et al.
Publicado: (2022)