Cargando…
Machine learning prediction models for prognosis of critically ill patients after open-heart surgery
We aimed to build up multiple machine learning models to predict 30-days mortality, and 3 complications including septic shock, thrombocytopenia, and liver dysfunction after open-heart surgery. Patients who underwent coronary artery bypass surgery, aortic valve replacement, or other heart-related su...
Autores principales: | Zhong, Zhihua, Yuan, Xin, Liu, Shizhen, Yang, Yuer, Liu, Fanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873187/ https://www.ncbi.nlm.nih.gov/pubmed/33564090 http://dx.doi.org/10.1038/s41598-021-83020-7 |
Ejemplares similares
-
Prognostic value of hyperuricemia for patients with sepsis in the intensive care unit
por: Liu, Shizhen, et al.
Publicado: (2022) -
The Association of Coagulation Indicators and Coagulant Agents With 30-Day Mortality of Critical Diabetics
por: Huang, Yingxin, et al.
Publicado: (2021) -
Early Prediction Model for Critical Illness of Hospitalized COVID-19 Patients Based on Machine Learning Techniques
por: Fu, Yacheng, et al.
Publicado: (2022) -
Prediction of Mortality after Burn Surgery in Critically Ill Burn Patients Using Machine Learning Models
por: Park, Ji Hyun, et al.
Publicado: (2022) -
Predicting mortality in critically ill patients with diabetes using machine learning and clinical notes
por: Ye, Jiancheng, et al.
Publicado: (2020)