Cargando…
Forecasting influenza activity using machine-learned mobility map
Human mobility is a primary driver of infectious disease spread. However, existing data is limited in availability, coverage, granularity, and timeliness. Data-driven forecasts of disease dynamics are crucial for decision-making by health officials and private citizens alike. In this work, we focus...
Autores principales: | Venkatramanan, Srinivasan, Sadilek, Adam, Fadikar, Arindam, Barrett, Christopher L., Biggerstaff, Matthew, Chen, Jiangzhuo, Dotiwalla, Xerxes, Eastham, Paul, Gipson, Bryant, Higdon, Dave, Kucuktunc, Onur, Lieber, Allison, Lewis, Bryan L., Reynolds, Zane, Vullikanti, Anil K., Wang, Lijing, Marathe, Madhav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873234/ https://www.ncbi.nlm.nih.gov/pubmed/33563980 http://dx.doi.org/10.1038/s41467-021-21018-5 |
Ejemplares similares
-
Optimizing spatial allocation of seasonal influenza vaccine under temporal constraints
por: Venkatramanan, Srinivasan, et al.
Publicado: (2019) -
Hierarchical organization of urban mobility and its connection with city livability
por: Bassolas, Aleix, et al.
Publicado: (2019) -
Reply to: On the difficulty of achieving differential privacy in practice: user-level guarantees in aggregate location data
por: Bassolas, Aleix, et al.
Publicado: (2022) -
Using Mobility Data to Understand and Forecast COVID19 Dynamics
por: Wang, Lijing, et al.
Publicado: (2020) -
Data-driven modeling for different stages of pandemic response
por: Adiga, Aniruddha, et al.
Publicado: (2020)