Cargando…

Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria

Cable bacteria are multicellular, Gram-negative filamentous bacteria that display a unique division of metabolic labor between cells. Cells in deeper sediment layers are oxidizing sulfide, while cells in the surface layers of the sediment are reducing oxygen. The electrical coupling of these two red...

Descripción completa

Detalles Bibliográficos
Autores principales: Geerlings, Nicole M. J., Geelhoed, Jeanine S., Vasquez-Cardenas, Diana, Kienhuis, Michiel V. M., Hidalgo-Martinez, Silvia, Boschker, Henricus T. S., Middelburg, Jack J., Meysman, Filip J. R., Polerecky, Lubos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873302/
https://www.ncbi.nlm.nih.gov/pubmed/33584623
http://dx.doi.org/10.3389/fmicb.2021.620807
_version_ 1783649358706638848
author Geerlings, Nicole M. J.
Geelhoed, Jeanine S.
Vasquez-Cardenas, Diana
Kienhuis, Michiel V. M.
Hidalgo-Martinez, Silvia
Boschker, Henricus T. S.
Middelburg, Jack J.
Meysman, Filip J. R.
Polerecky, Lubos
author_facet Geerlings, Nicole M. J.
Geelhoed, Jeanine S.
Vasquez-Cardenas, Diana
Kienhuis, Michiel V. M.
Hidalgo-Martinez, Silvia
Boschker, Henricus T. S.
Middelburg, Jack J.
Meysman, Filip J. R.
Polerecky, Lubos
author_sort Geerlings, Nicole M. J.
collection PubMed
description Cable bacteria are multicellular, Gram-negative filamentous bacteria that display a unique division of metabolic labor between cells. Cells in deeper sediment layers are oxidizing sulfide, while cells in the surface layers of the sediment are reducing oxygen. The electrical coupling of these two redox half reactions is ensured via long-distance electron transport through a network of conductive fibers that run in the shared cell envelope of the centimeter-long filament. Here we investigate how this unique electrogenic metabolism is linked to filament growth and cell division. Combining dual-label stable isotope probing ((13)C and (15)N), nanoscale secondary ion mass spectrometry, fluorescence microscopy and genome analysis, we find that the cell cycle of cable bacteria cells is highly comparable to that of other, single-celled Gram-negative bacteria. However, the timing of cell growth and division appears to be tightly and uniquely controlled by long-distance electron transport, as cell division within an individual filament shows a remarkable synchronicity that extends over a millimeter length scale. To explain this, we propose the “oxygen pacemaker” model in which a filament only grows when performing long-distance transport, and the latter is only possible when a filament has access to oxygen so it can discharge electrons from its internal electrical network.
format Online
Article
Text
id pubmed-7873302
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-78733022021-02-11 Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria Geerlings, Nicole M. J. Geelhoed, Jeanine S. Vasquez-Cardenas, Diana Kienhuis, Michiel V. M. Hidalgo-Martinez, Silvia Boschker, Henricus T. S. Middelburg, Jack J. Meysman, Filip J. R. Polerecky, Lubos Front Microbiol Microbiology Cable bacteria are multicellular, Gram-negative filamentous bacteria that display a unique division of metabolic labor between cells. Cells in deeper sediment layers are oxidizing sulfide, while cells in the surface layers of the sediment are reducing oxygen. The electrical coupling of these two redox half reactions is ensured via long-distance electron transport through a network of conductive fibers that run in the shared cell envelope of the centimeter-long filament. Here we investigate how this unique electrogenic metabolism is linked to filament growth and cell division. Combining dual-label stable isotope probing ((13)C and (15)N), nanoscale secondary ion mass spectrometry, fluorescence microscopy and genome analysis, we find that the cell cycle of cable bacteria cells is highly comparable to that of other, single-celled Gram-negative bacteria. However, the timing of cell growth and division appears to be tightly and uniquely controlled by long-distance electron transport, as cell division within an individual filament shows a remarkable synchronicity that extends over a millimeter length scale. To explain this, we propose the “oxygen pacemaker” model in which a filament only grows when performing long-distance transport, and the latter is only possible when a filament has access to oxygen so it can discharge electrons from its internal electrical network. Frontiers Media S.A. 2021-01-27 /pmc/articles/PMC7873302/ /pubmed/33584623 http://dx.doi.org/10.3389/fmicb.2021.620807 Text en Copyright © 2021 Geerlings, Geelhoed, Vasquez-Cardenas, Kienhuis, Hidalgo-Martinez, Boschker, Middelburg, Meysman and Polerecky. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Geerlings, Nicole M. J.
Geelhoed, Jeanine S.
Vasquez-Cardenas, Diana
Kienhuis, Michiel V. M.
Hidalgo-Martinez, Silvia
Boschker, Henricus T. S.
Middelburg, Jack J.
Meysman, Filip J. R.
Polerecky, Lubos
Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria
title Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria
title_full Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria
title_fullStr Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria
title_full_unstemmed Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria
title_short Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria
title_sort cell cycle, filament growth and synchronized cell division in multicellular cable bacteria
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873302/
https://www.ncbi.nlm.nih.gov/pubmed/33584623
http://dx.doi.org/10.3389/fmicb.2021.620807
work_keys_str_mv AT geerlingsnicolemj cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT geelhoedjeanines cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT vasquezcardenasdiana cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT kienhuismichielvm cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT hidalgomartinezsilvia cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT boschkerhenricusts cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT middelburgjackj cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT meysmanfilipjr cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT polereckylubos cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria