Cargando…

Prediction model of bleeding after endoscopic submucosal dissection for early gastric cancer: BEST-J score

OBJECTIVE: Bleeding after endoscopic submucosal dissection (ESD) for early gastric cancer (EGC) is a frequent adverse event after ESD. We aimed to develop and externally validate a clinically useful prediction model (BEST-J score: Bleeding after ESD Trend from Japan) for bleeding after ESD for EGC....

Descripción completa

Detalles Bibliográficos
Autores principales: Hatta, Waku, Tsuji, Yosuke, Yoshio, Toshiyuki, Kakushima, Naomi, Hoteya, Shu, Doyama, Hisashi, Nagami, Yasuaki, Hikichi, Takuto, Kobayashi, Masakuni, Morita, Yoshinori, Sumiyoshi, Tetsuya, Iguchi, Mikitaka, Tomida, Hideomi, Inoue, Takuya, Koike, Tomoyuki, Mikami, Tatsuya, Hasatani, Kenkei, Nishikawa, Jun, Matsumura, Tomoaki, Nebiki, Hiroko, Nakamatsu, Dai, Ohnita, Ken, Suzuki, Haruhisa, Ueyama, Hiroya, Hayashi, Yoshito, Sugimoto, Mitsushige, Yamaguchi, Shinjiro, Michida, Tomoki, Yada, Tomoyuki, Asahina, Yoshiro, Narasaka, Toshiaki, Kuribasyashi, Shiko, Kiyotoki, Shu, Mabe, Katsuhiro, Nakamura, Tomohiro, Nakaya, Naoki, Fujishiro, Mitsuhiro, Masamune, Atsushi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873424/
https://www.ncbi.nlm.nih.gov/pubmed/32499390
http://dx.doi.org/10.1136/gutjnl-2019-319926
_version_ 1783649381986074624
author Hatta, Waku
Tsuji, Yosuke
Yoshio, Toshiyuki
Kakushima, Naomi
Hoteya, Shu
Doyama, Hisashi
Nagami, Yasuaki
Hikichi, Takuto
Kobayashi, Masakuni
Morita, Yoshinori
Sumiyoshi, Tetsuya
Iguchi, Mikitaka
Tomida, Hideomi
Inoue, Takuya
Koike, Tomoyuki
Mikami, Tatsuya
Hasatani, Kenkei
Nishikawa, Jun
Matsumura, Tomoaki
Nebiki, Hiroko
Nakamatsu, Dai
Ohnita, Ken
Suzuki, Haruhisa
Ueyama, Hiroya
Hayashi, Yoshito
Sugimoto, Mitsushige
Yamaguchi, Shinjiro
Michida, Tomoki
Yada, Tomoyuki
Asahina, Yoshiro
Narasaka, Toshiaki
Kuribasyashi, Shiko
Kiyotoki, Shu
Mabe, Katsuhiro
Nakamura, Tomohiro
Nakaya, Naoki
Fujishiro, Mitsuhiro
Masamune, Atsushi
author_facet Hatta, Waku
Tsuji, Yosuke
Yoshio, Toshiyuki
Kakushima, Naomi
Hoteya, Shu
Doyama, Hisashi
Nagami, Yasuaki
Hikichi, Takuto
Kobayashi, Masakuni
Morita, Yoshinori
Sumiyoshi, Tetsuya
Iguchi, Mikitaka
Tomida, Hideomi
Inoue, Takuya
Koike, Tomoyuki
Mikami, Tatsuya
Hasatani, Kenkei
Nishikawa, Jun
Matsumura, Tomoaki
Nebiki, Hiroko
Nakamatsu, Dai
Ohnita, Ken
Suzuki, Haruhisa
Ueyama, Hiroya
Hayashi, Yoshito
Sugimoto, Mitsushige
Yamaguchi, Shinjiro
Michida, Tomoki
Yada, Tomoyuki
Asahina, Yoshiro
Narasaka, Toshiaki
Kuribasyashi, Shiko
Kiyotoki, Shu
Mabe, Katsuhiro
Nakamura, Tomohiro
Nakaya, Naoki
Fujishiro, Mitsuhiro
Masamune, Atsushi
author_sort Hatta, Waku
collection PubMed
description OBJECTIVE: Bleeding after endoscopic submucosal dissection (ESD) for early gastric cancer (EGC) is a frequent adverse event after ESD. We aimed to develop and externally validate a clinically useful prediction model (BEST-J score: Bleeding after ESD Trend from Japan) for bleeding after ESD for EGC. DESIGN: This retrospective study enrolled patients who underwent ESD for EGC. Patients in the derivation cohort (n=8291) were recruited from 25 institutions, and patients in the external validation cohort (n=2029) were recruited from eight institutions in other areas. In the derivation cohort, weighted points were assigned to predictors of bleeding determined in the multivariate logistic regression analysis and a prediction model was established. External validation of the model was conducted to analyse discrimination and calibration. RESULTS: A prediction model comprised 10 variables (warfarin, direct oral anticoagulant, chronic kidney disease with haemodialysis, P2Y12 receptor antagonist, aspirin, cilostazol, tumour size >30 mm, lower-third in tumour location, presence of multiple tumours and interruption of each kind of antithrombotic agents). The rates of bleeding after ESD at low-risk (0 to 1 points), intermediate-risk (2 points), high-risk (3 to 4 points) and very high-risk (≥5 points) were 2.8%, 6.1%, 11.4% and 29.7%, respectively. In the external validation cohort, the model showed moderately good discrimination, with a c-statistic of 0.70 (95% CI, 0.64 to 0.76), and good calibration (calibration-in-the-large, 0.05; calibration slope, 1.01). CONCLUSIONS: In this nationwide multicentre study, we derived and externally validated a prediction model for bleeding after ESD. This model may be a good clinical decision-making support tool for ESD in patients with EGC.
format Online
Article
Text
id pubmed-7873424
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BMJ Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-78734242021-02-18 Prediction model of bleeding after endoscopic submucosal dissection for early gastric cancer: BEST-J score Hatta, Waku Tsuji, Yosuke Yoshio, Toshiyuki Kakushima, Naomi Hoteya, Shu Doyama, Hisashi Nagami, Yasuaki Hikichi, Takuto Kobayashi, Masakuni Morita, Yoshinori Sumiyoshi, Tetsuya Iguchi, Mikitaka Tomida, Hideomi Inoue, Takuya Koike, Tomoyuki Mikami, Tatsuya Hasatani, Kenkei Nishikawa, Jun Matsumura, Tomoaki Nebiki, Hiroko Nakamatsu, Dai Ohnita, Ken Suzuki, Haruhisa Ueyama, Hiroya Hayashi, Yoshito Sugimoto, Mitsushige Yamaguchi, Shinjiro Michida, Tomoki Yada, Tomoyuki Asahina, Yoshiro Narasaka, Toshiaki Kuribasyashi, Shiko Kiyotoki, Shu Mabe, Katsuhiro Nakamura, Tomohiro Nakaya, Naoki Fujishiro, Mitsuhiro Masamune, Atsushi Gut Endoscopy OBJECTIVE: Bleeding after endoscopic submucosal dissection (ESD) for early gastric cancer (EGC) is a frequent adverse event after ESD. We aimed to develop and externally validate a clinically useful prediction model (BEST-J score: Bleeding after ESD Trend from Japan) for bleeding after ESD for EGC. DESIGN: This retrospective study enrolled patients who underwent ESD for EGC. Patients in the derivation cohort (n=8291) were recruited from 25 institutions, and patients in the external validation cohort (n=2029) were recruited from eight institutions in other areas. In the derivation cohort, weighted points were assigned to predictors of bleeding determined in the multivariate logistic regression analysis and a prediction model was established. External validation of the model was conducted to analyse discrimination and calibration. RESULTS: A prediction model comprised 10 variables (warfarin, direct oral anticoagulant, chronic kidney disease with haemodialysis, P2Y12 receptor antagonist, aspirin, cilostazol, tumour size >30 mm, lower-third in tumour location, presence of multiple tumours and interruption of each kind of antithrombotic agents). The rates of bleeding after ESD at low-risk (0 to 1 points), intermediate-risk (2 points), high-risk (3 to 4 points) and very high-risk (≥5 points) were 2.8%, 6.1%, 11.4% and 29.7%, respectively. In the external validation cohort, the model showed moderately good discrimination, with a c-statistic of 0.70 (95% CI, 0.64 to 0.76), and good calibration (calibration-in-the-large, 0.05; calibration slope, 1.01). CONCLUSIONS: In this nationwide multicentre study, we derived and externally validated a prediction model for bleeding after ESD. This model may be a good clinical decision-making support tool for ESD in patients with EGC. BMJ Publishing Group 2021-03 2020-06-04 /pmc/articles/PMC7873424/ /pubmed/32499390 http://dx.doi.org/10.1136/gutjnl-2019-319926 Text en © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ http://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
spellingShingle Endoscopy
Hatta, Waku
Tsuji, Yosuke
Yoshio, Toshiyuki
Kakushima, Naomi
Hoteya, Shu
Doyama, Hisashi
Nagami, Yasuaki
Hikichi, Takuto
Kobayashi, Masakuni
Morita, Yoshinori
Sumiyoshi, Tetsuya
Iguchi, Mikitaka
Tomida, Hideomi
Inoue, Takuya
Koike, Tomoyuki
Mikami, Tatsuya
Hasatani, Kenkei
Nishikawa, Jun
Matsumura, Tomoaki
Nebiki, Hiroko
Nakamatsu, Dai
Ohnita, Ken
Suzuki, Haruhisa
Ueyama, Hiroya
Hayashi, Yoshito
Sugimoto, Mitsushige
Yamaguchi, Shinjiro
Michida, Tomoki
Yada, Tomoyuki
Asahina, Yoshiro
Narasaka, Toshiaki
Kuribasyashi, Shiko
Kiyotoki, Shu
Mabe, Katsuhiro
Nakamura, Tomohiro
Nakaya, Naoki
Fujishiro, Mitsuhiro
Masamune, Atsushi
Prediction model of bleeding after endoscopic submucosal dissection for early gastric cancer: BEST-J score
title Prediction model of bleeding after endoscopic submucosal dissection for early gastric cancer: BEST-J score
title_full Prediction model of bleeding after endoscopic submucosal dissection for early gastric cancer: BEST-J score
title_fullStr Prediction model of bleeding after endoscopic submucosal dissection for early gastric cancer: BEST-J score
title_full_unstemmed Prediction model of bleeding after endoscopic submucosal dissection for early gastric cancer: BEST-J score
title_short Prediction model of bleeding after endoscopic submucosal dissection for early gastric cancer: BEST-J score
title_sort prediction model of bleeding after endoscopic submucosal dissection for early gastric cancer: best-j score
topic Endoscopy
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873424/
https://www.ncbi.nlm.nih.gov/pubmed/32499390
http://dx.doi.org/10.1136/gutjnl-2019-319926
work_keys_str_mv AT hattawaku predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT tsujiyosuke predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT yoshiotoshiyuki predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT kakushimanaomi predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT hoteyashu predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT doyamahisashi predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT nagamiyasuaki predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT hikichitakuto predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT kobayashimasakuni predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT moritayoshinori predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT sumiyoshitetsuya predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT iguchimikitaka predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT tomidahideomi predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT inouetakuya predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT koiketomoyuki predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT mikamitatsuya predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT hasatanikenkei predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT nishikawajun predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT matsumuratomoaki predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT nebikihiroko predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT nakamatsudai predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT ohnitaken predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT suzukiharuhisa predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT ueyamahiroya predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT hayashiyoshito predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT sugimotomitsushige predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT yamaguchishinjiro predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT michidatomoki predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT yadatomoyuki predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT asahinayoshiro predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT narasakatoshiaki predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT kuribasyashishiko predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT kiyotokishu predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT mabekatsuhiro predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT nakamuratomohiro predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT nakayanaoki predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT fujishiromitsuhiro predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore
AT masamuneatsushi predictionmodelofbleedingafterendoscopicsubmucosaldissectionforearlygastriccancerbestjscore