Cargando…
Improvement of Multiparametric MR Image Segmentation by Augmenting the Data With Generative Adversarial Networks for Glioma Patients
Every year thousands of patients are diagnosed with a glioma, a type of malignant brain tumor. MRI plays an essential role in the diagnosis and treatment assessment of these patients. Neural networks show great potential to aid physicians in the medical image analysis. This study investigated the cr...
Autores principales: | Carver, Eric Nathan, Dai, Zhenzhen, Liang, Evan, Snyder, James, Wen, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873446/ https://www.ncbi.nlm.nih.gov/pubmed/33584233 http://dx.doi.org/10.3389/fncom.2020.495075 |
Ejemplares similares
-
Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks
por: Bao, Guangcheng, et al.
Publicado: (2021) -
A transformer-based generative adversarial network for brain tumor segmentation
por: Huang, Liqun, et al.
Publicado: (2022) -
Hippocampal subfields segmentation in brain MR images using generative adversarial networks
por: Shi, Yonggang, et al.
Publicado: (2019) -
Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks
por: Sandfort, Veit, et al.
Publicado: (2019) -
BSCI-14. SYNTHETIC METASTATIC BRAIN DISEASE MRI IMAGES CREATED USING A GENERATIVE ADVERSARY NETWORK TO OVERCOME DEEP MACHINE LEARNING CHALLENGES IN HEALTHCARE
por: Dai, Zhenzhen, et al.
Publicado: (2019)