Cargando…
Inhibition of tumor invasion and metastasis by targeting TGF-β-Smad-MMP2 pathway with Asiatic acid and Naringenin
Transforming growth factor β (TGF-β) has been shown to promote tumor invasion and metastasis by activating the matrix metalloproteinases (MMPs); however, signaling mechanisms remain controversial and therapies targeting MMPs are still suboptimal. In the present study, we found that combined therapy...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873580/ https://www.ncbi.nlm.nih.gov/pubmed/33614911 http://dx.doi.org/10.1016/j.omto.2021.01.006 |
Sumario: | Transforming growth factor β (TGF-β) has been shown to promote tumor invasion and metastasis by activating the matrix metalloproteinases (MMPs); however, signaling mechanisms remain controversial and therapies targeting MMPs are still suboptimal. In the present study, we found that combined therapy with Asiatic acid (AA), a Smad7 agonist, and Naringenin (NG), a Smad3 inhibitor, effectively retrieved the balance between Smad3 and Smad7 signaling in the TGF-β-rich tumor microenvironment and thus significantly suppressed tumor invasion and metastasis in mouse models of melanoma and lung carcinoma. Mechanistically, we unraveled that Smad3 acted as a transcriptional activator of MMP2 and as a transcriptional suppressor of tissue inhibitors of metalloproteinase-2 (TIMP2) via binding to 5′ UTR of MMP2 and 3′ UTR of TIMP2, respectively. Treatment with NG inhibited Smad3-mediated MMP2 transcription while increasing TIMP, whereas treatment with AA enhanced Smad7 to suppress TGF-β/Smad3 signaling, as well as the activation of MMP2 by targeting the nuclear factor-κB (NF-κB)-membrane-type-1 MMP (MT1-MMP) axis. Therefore, the combination of AA and NG additively suppressed invasion and metastasis of melanoma and lung carcinoma by targeting TGF-β/Smad-dependent MMP2 transcription, post-translational activation, and function. |
---|