Cargando…
Computed Tomography Radiomics for Predicting Pathological Grade of Renal Cell Carcinoma
BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer and it has the worst prognosis among all renal cancers. However, traditional radiological characteristics on computed tomography (CT) scans of ccRCC have been insufficient to predict the pathological grade of ccRCC b...
Autores principales: | Yi, Xiaoping, Xiao, Qiao, Zeng, Feiyue, Yin, Hongling, Li, Zan, Qian, Cheng, Wang, Cikui, Lei, Guangwu, Xu, Qingsong, Li, Chuanquan, Li, Minghao, Gong, Guanghui, Zee, Chishing, Guan, Xiao, Liu, Longfei, Chen, Bihong T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873602/ https://www.ncbi.nlm.nih.gov/pubmed/33585193 http://dx.doi.org/10.3389/fonc.2020.570396 |
Ejemplares similares
-
Validation of the World Health Organization/International Society of Urological Pathology grading for Chinese patients with clear cell renal cell carcinoma
por: Xiao, Qiao, et al.
Publicado: (2020) -
Machine Learning: Applications and Advanced Progresses of Radiomics in Endocrine Neoplasms
por: Wang, Yong, et al.
Publicado: (2021) -
Adrenal incidentaloma: machine learning-based quantitative texture analysis of unenhanced CT can effectively differentiate sPHEO from lipid-poor adrenal adenoma
por: Yi, Xiaoping, et al.
Publicado: (2018) -
Clinical Syndromes and Genetic Screening Strategies of Pheochromocytoma and Paraganglioma
por: Liu, Peihua, et al.
Publicado: (2018) -
Application of radiomics in adrenal incidentaloma: a literature review
por: Li, Cheng, et al.
Publicado: (2022)