Cargando…

Multi-Omics Driven Metabolic Network Reconstruction and Analysis of Lignocellulosic Carbon Utilization in Rhodosporidium toruloides

An oleaginous yeast Rhodosporidium toruloides is a promising host for converting lignocellulosic biomass to bioproducts and biofuels. In this work, we performed multi-omics analysis of lignocellulosic carbon utilization in R. toruloides and reconstructed the genome-scale metabolic network of R. toru...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Joonhoon, Coradetti, Samuel T., Kim, Young-Mo, Gao, Yuqian, Yaegashi, Junko, Zucker, Jeremy D., Munoz, Nathalie, Zink, Erika M., Burnum-Johnson, Kristin E., Baker, Scott E., Simmons, Blake A., Skerker, Jeffrey M., Gladden, John M., Magnuson, Jon K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873862/
https://www.ncbi.nlm.nih.gov/pubmed/33585414
http://dx.doi.org/10.3389/fbioe.2020.612832
_version_ 1783649463242326016
author Kim, Joonhoon
Coradetti, Samuel T.
Kim, Young-Mo
Gao, Yuqian
Yaegashi, Junko
Zucker, Jeremy D.
Munoz, Nathalie
Zink, Erika M.
Burnum-Johnson, Kristin E.
Baker, Scott E.
Simmons, Blake A.
Skerker, Jeffrey M.
Gladden, John M.
Magnuson, Jon K.
author_facet Kim, Joonhoon
Coradetti, Samuel T.
Kim, Young-Mo
Gao, Yuqian
Yaegashi, Junko
Zucker, Jeremy D.
Munoz, Nathalie
Zink, Erika M.
Burnum-Johnson, Kristin E.
Baker, Scott E.
Simmons, Blake A.
Skerker, Jeffrey M.
Gladden, John M.
Magnuson, Jon K.
author_sort Kim, Joonhoon
collection PubMed
description An oleaginous yeast Rhodosporidium toruloides is a promising host for converting lignocellulosic biomass to bioproducts and biofuels. In this work, we performed multi-omics analysis of lignocellulosic carbon utilization in R. toruloides and reconstructed the genome-scale metabolic network of R. toruloides. High-quality metabolic network models for model organisms and orthologous protein mapping were used to build a draft metabolic network reconstruction. The reconstruction was manually curated to build a metabolic model using functional annotation and multi-omics data including transcriptomics, proteomics, metabolomics, and RB-TDNA sequencing. The multi-omics data and metabolic model were used to investigate R. toruloides metabolism including lipid accumulation and lignocellulosic carbon utilization. The developed metabolic model was validated against high-throughput growth phenotyping and gene fitness data, and further refined to resolve the inconsistencies between prediction and data. We believe that this is the most complete and accurate metabolic network model available for R. toruloides to date.
format Online
Article
Text
id pubmed-7873862
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-78738622021-02-11 Multi-Omics Driven Metabolic Network Reconstruction and Analysis of Lignocellulosic Carbon Utilization in Rhodosporidium toruloides Kim, Joonhoon Coradetti, Samuel T. Kim, Young-Mo Gao, Yuqian Yaegashi, Junko Zucker, Jeremy D. Munoz, Nathalie Zink, Erika M. Burnum-Johnson, Kristin E. Baker, Scott E. Simmons, Blake A. Skerker, Jeffrey M. Gladden, John M. Magnuson, Jon K. Front Bioeng Biotechnol Bioengineering and Biotechnology An oleaginous yeast Rhodosporidium toruloides is a promising host for converting lignocellulosic biomass to bioproducts and biofuels. In this work, we performed multi-omics analysis of lignocellulosic carbon utilization in R. toruloides and reconstructed the genome-scale metabolic network of R. toruloides. High-quality metabolic network models for model organisms and orthologous protein mapping were used to build a draft metabolic network reconstruction. The reconstruction was manually curated to build a metabolic model using functional annotation and multi-omics data including transcriptomics, proteomics, metabolomics, and RB-TDNA sequencing. The multi-omics data and metabolic model were used to investigate R. toruloides metabolism including lipid accumulation and lignocellulosic carbon utilization. The developed metabolic model was validated against high-throughput growth phenotyping and gene fitness data, and further refined to resolve the inconsistencies between prediction and data. We believe that this is the most complete and accurate metabolic network model available for R. toruloides to date. Frontiers Media S.A. 2021-01-08 /pmc/articles/PMC7873862/ /pubmed/33585414 http://dx.doi.org/10.3389/fbioe.2020.612832 Text en Copyright © 2021 Kim, Coradetti, Kim, Gao, Yaegashi, Zucker, Munoz, Zink, Burnum-Johnson, Baker, Simmons, Skerker, Gladden and Magnuson. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Bioengineering and Biotechnology
Kim, Joonhoon
Coradetti, Samuel T.
Kim, Young-Mo
Gao, Yuqian
Yaegashi, Junko
Zucker, Jeremy D.
Munoz, Nathalie
Zink, Erika M.
Burnum-Johnson, Kristin E.
Baker, Scott E.
Simmons, Blake A.
Skerker, Jeffrey M.
Gladden, John M.
Magnuson, Jon K.
Multi-Omics Driven Metabolic Network Reconstruction and Analysis of Lignocellulosic Carbon Utilization in Rhodosporidium toruloides
title Multi-Omics Driven Metabolic Network Reconstruction and Analysis of Lignocellulosic Carbon Utilization in Rhodosporidium toruloides
title_full Multi-Omics Driven Metabolic Network Reconstruction and Analysis of Lignocellulosic Carbon Utilization in Rhodosporidium toruloides
title_fullStr Multi-Omics Driven Metabolic Network Reconstruction and Analysis of Lignocellulosic Carbon Utilization in Rhodosporidium toruloides
title_full_unstemmed Multi-Omics Driven Metabolic Network Reconstruction and Analysis of Lignocellulosic Carbon Utilization in Rhodosporidium toruloides
title_short Multi-Omics Driven Metabolic Network Reconstruction and Analysis of Lignocellulosic Carbon Utilization in Rhodosporidium toruloides
title_sort multi-omics driven metabolic network reconstruction and analysis of lignocellulosic carbon utilization in rhodosporidium toruloides
topic Bioengineering and Biotechnology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873862/
https://www.ncbi.nlm.nih.gov/pubmed/33585414
http://dx.doi.org/10.3389/fbioe.2020.612832
work_keys_str_mv AT kimjoonhoon multiomicsdrivenmetabolicnetworkreconstructionandanalysisoflignocellulosiccarbonutilizationinrhodosporidiumtoruloides
AT coradettisamuelt multiomicsdrivenmetabolicnetworkreconstructionandanalysisoflignocellulosiccarbonutilizationinrhodosporidiumtoruloides
AT kimyoungmo multiomicsdrivenmetabolicnetworkreconstructionandanalysisoflignocellulosiccarbonutilizationinrhodosporidiumtoruloides
AT gaoyuqian multiomicsdrivenmetabolicnetworkreconstructionandanalysisoflignocellulosiccarbonutilizationinrhodosporidiumtoruloides
AT yaegashijunko multiomicsdrivenmetabolicnetworkreconstructionandanalysisoflignocellulosiccarbonutilizationinrhodosporidiumtoruloides
AT zuckerjeremyd multiomicsdrivenmetabolicnetworkreconstructionandanalysisoflignocellulosiccarbonutilizationinrhodosporidiumtoruloides
AT munoznathalie multiomicsdrivenmetabolicnetworkreconstructionandanalysisoflignocellulosiccarbonutilizationinrhodosporidiumtoruloides
AT zinkerikam multiomicsdrivenmetabolicnetworkreconstructionandanalysisoflignocellulosiccarbonutilizationinrhodosporidiumtoruloides
AT burnumjohnsonkristine multiomicsdrivenmetabolicnetworkreconstructionandanalysisoflignocellulosiccarbonutilizationinrhodosporidiumtoruloides
AT bakerscotte multiomicsdrivenmetabolicnetworkreconstructionandanalysisoflignocellulosiccarbonutilizationinrhodosporidiumtoruloides
AT simmonsblakea multiomicsdrivenmetabolicnetworkreconstructionandanalysisoflignocellulosiccarbonutilizationinrhodosporidiumtoruloides
AT skerkerjeffreym multiomicsdrivenmetabolicnetworkreconstructionandanalysisoflignocellulosiccarbonutilizationinrhodosporidiumtoruloides
AT gladdenjohnm multiomicsdrivenmetabolicnetworkreconstructionandanalysisoflignocellulosiccarbonutilizationinrhodosporidiumtoruloides
AT magnusonjonk multiomicsdrivenmetabolicnetworkreconstructionandanalysisoflignocellulosiccarbonutilizationinrhodosporidiumtoruloides