Cargando…
Hierarchical Microbial Functions Prediction by Graph Aggregated Embedding
Matching 16S rRNA gene sequencing data to a metabolic reference database is a meaningful way to predict the metabolic function of bacteria and archaea, bringing greater insight to the working of the microbial community. However, some operational taxonomy units (OTUs) cannot be functionally profiled,...
Autores principales: | Hou, Yujie, Zhang, Xiong, Zhou, Qinyan, Hong, Wenxing, Wang, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874084/ https://www.ncbi.nlm.nih.gov/pubmed/33584804 http://dx.doi.org/10.3389/fgene.2020.608512 |
Ejemplares similares
-
Graph Embedding Deep Learning Guides Microbial Biomarkers' Identification
por: Zhu, Qiang, et al.
Publicado: (2019) -
Corrigendum: Graph Embedding Deep Learning Guides Microbial Biomarkers' Identification
por: Zhu, Qiang, et al.
Publicado: (2020) -
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023) -
Comparative Analysis of Unsupervised Protein Similarity Prediction Based on Graph Embedding
por: Zhang, Yuanyuan, et al.
Publicado: (2021) -
An Efficient Computational Model for Large-Scale Prediction of Protein–Protein Interactions Based on Accurate and Scalable Graph Embedding
por: Su, Xiao-Rui, et al.
Publicado: (2021)