Cargando…
Deep Reinforcement Learning Controller for 3D Path Following and Collision Avoidance by Autonomous Underwater Vehicles
Control theory provides engineers with a multitude of tools to design controllers that manipulate the closed-loop behavior and stability of dynamical systems. These methods rely heavily on insights into the mathematical model governing the physical system. However, in complex systems, such as autono...
Autores principales: | Havenstrøm, Simen Theie, Rasheed, Adil, San, Omer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874127/ https://www.ncbi.nlm.nih.gov/pubmed/33585570 http://dx.doi.org/10.3389/frobt.2020.566037 |
Ejemplares similares
-
Path Following, Obstacle Detection and Obstacle Avoidance for Thrusted Underwater Snake Robots
por: Kelasidi, Eleni, et al.
Publicado: (2019) -
Towards Energy-Aware Feedback Planning for Long-Range Autonomous Underwater Vehicles
por: Alam, Tauhidul, et al.
Publicado: (2021) -
Autonomous Collision Avoidance at Sea: A Survey
por: Burmeister, Hans-Christoph, et al.
Publicado: (2021) -
Bounded Cost Path Planning for Underwater Vehicles Assisted by a Time-Invariant Partitioned Flow Field Model
por: Hou, Mengxue, et al.
Publicado: (2021) -
Robust Formation Control for Multiple Underwater Vehicles
por: Bechlioulis, Charalampos P., et al.
Publicado: (2019)