Cargando…
Estimating Brain Functional Networks Based on Adaptively-Weighted fMRI Signals for MCI Identification
Brain functional network (BFN) analysis is becoming a crucial way to explore the inherent organized pattern of the brain and reveal potential biomarkers for diagnosing neurological or psychological disorders. In so doing, a well-estimated BFN is of great concern. In practice, however, noises or arti...
Autores principales: | Chen, Huihui, Zhang, Yining, Zhang, Limei, Qiao, Lishan, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874154/ https://www.ncbi.nlm.nih.gov/pubmed/33584242 http://dx.doi.org/10.3389/fnagi.2020.595322 |
Ejemplares similares
-
Estimating sparse functional brain networks with spatial constraints for MCI identification
por: Xue, Yanfang, et al.
Publicado: (2020) -
Improving Sparsity and Modularity of High-Order Functional Connectivity Networks for MCI and ASD Identification
por: Zhou, Yueying, et al.
Publicado: (2018) -
Correction: Estimating sparse functional brain networks with spatial constraints for MCI identification
por: Xue, Yanfang, et al.
Publicado: (2021) -
Remodeling Pearson's Correlation for Functional Brain Network Estimation and Autism Spectrum Disorder Identification
por: Li, Weikai, et al.
Publicado: (2017) -
Simultaneous Estimation of Low- and High-Order Functional Connectivity for Identifying Mild Cognitive Impairment
por: Zhou, Yueying, et al.
Publicado: (2018)