Cargando…

MiR-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma

Among astrocyte tumors, glioblastoma (GBM) is the most malignant glioma, highly aggressive and invasive, with extremely poor prognosis. Previous research has reported that microRNAs (miRNAs) participate in the progression of many cancers. Thus, this study aimed to explore the role and the underlying...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Bo, Chen, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874546/
https://www.ncbi.nlm.nih.gov/pubmed/33817216
http://dx.doi.org/10.1515/biol-2020-0024
_version_ 1783649604767580160
author Zheng, Bo
Chen, Tao
author_facet Zheng, Bo
Chen, Tao
author_sort Zheng, Bo
collection PubMed
description Among astrocyte tumors, glioblastoma (GBM) is the most malignant glioma, highly aggressive and invasive, with extremely poor prognosis. Previous research has reported that microRNAs (miRNAs) participate in the progression of many cancers. Thus, this study aimed to explore the role and the underlying mechanisms of microRNA (miR)-489-3p in GBM progression. The expression of miR-489-3p and brain-derived neurotrophic factor (BDNF) mRNA was measured by quantitative real-time polymerase chain reaction. Western blot analysis was used to detect BDNF protein and the PI3K/AKT pathway-related protein. Cell proliferation, apoptosis, migration, and invasion were analyzed using CKK-8 assay, flow cytometry, and transwell assay, respectively. The interaction between BDNF and miR-489-3p was explored by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-489-3p was down-regulated and BDNF was up-regulated in GBM tissues and cells. MiR-489-3p re-expression or BDNF knockdown inhibited GBM cell proliferation, migration, and invasion, and promoted apoptosis. BDNF was a target of miR-489-3p, and BDNF up-regulation reversed the effects of miR-489-3p on GBM cells. The protein levels of p-AKT and p-PI3K were notably reduced in GBM cells by overexpression of miR-489-3p, but were rescued following BDNF up-regulation. Therefore, miR-489-3p inhibited proliferation, migration, and invasion, and induced apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in GBM, providing new strategies for clinical treatment of GBM.
format Online
Article
Text
id pubmed-7874546
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher De Gruyter
record_format MEDLINE/PubMed
spelling pubmed-78745462021-04-01 MiR-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma Zheng, Bo Chen, Tao Open Life Sci Research Article Among astrocyte tumors, glioblastoma (GBM) is the most malignant glioma, highly aggressive and invasive, with extremely poor prognosis. Previous research has reported that microRNAs (miRNAs) participate in the progression of many cancers. Thus, this study aimed to explore the role and the underlying mechanisms of microRNA (miR)-489-3p in GBM progression. The expression of miR-489-3p and brain-derived neurotrophic factor (BDNF) mRNA was measured by quantitative real-time polymerase chain reaction. Western blot analysis was used to detect BDNF protein and the PI3K/AKT pathway-related protein. Cell proliferation, apoptosis, migration, and invasion were analyzed using CKK-8 assay, flow cytometry, and transwell assay, respectively. The interaction between BDNF and miR-489-3p was explored by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-489-3p was down-regulated and BDNF was up-regulated in GBM tissues and cells. MiR-489-3p re-expression or BDNF knockdown inhibited GBM cell proliferation, migration, and invasion, and promoted apoptosis. BDNF was a target of miR-489-3p, and BDNF up-regulation reversed the effects of miR-489-3p on GBM cells. The protein levels of p-AKT and p-PI3K were notably reduced in GBM cells by overexpression of miR-489-3p, but were rescued following BDNF up-regulation. Therefore, miR-489-3p inhibited proliferation, migration, and invasion, and induced apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in GBM, providing new strategies for clinical treatment of GBM. De Gruyter 2020-05-29 /pmc/articles/PMC7874546/ /pubmed/33817216 http://dx.doi.org/10.1515/biol-2020-0024 Text en © 2020 Bo Zheng and Tao Cheng, published by De Gruyter http://creativecommons.org/licenses/by/4.0 This work is licensed under the Creative Commons Attribution 4.0 International License.
spellingShingle Research Article
Zheng, Bo
Chen, Tao
MiR-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma
title MiR-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma
title_full MiR-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma
title_fullStr MiR-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma
title_full_unstemmed MiR-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma
title_short MiR-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma
title_sort mir-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the bdnf-mediated pi3k/akt pathway in glioblastoma
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874546/
https://www.ncbi.nlm.nih.gov/pubmed/33817216
http://dx.doi.org/10.1515/biol-2020-0024
work_keys_str_mv AT zhengbo mir4893pinhibitscellproliferationmigrationandinvasionandinducesapoptosisbytargetingthebdnfmediatedpi3kaktpathwayinglioblastoma
AT chentao mir4893pinhibitscellproliferationmigrationandinvasionandinducesapoptosisbytargetingthebdnfmediatedpi3kaktpathwayinglioblastoma