Cargando…
Ropivacaine inhibits proliferation, migration, and invasion while inducing apoptosis of glioma cells by regulating the SNHG16/miR-424-5p axis
BACKGROUND: Regional anesthesia has anti-proliferative and pro-apoptotic effects in various cancers. Therefore, the purpose of this study was to investigate the effects of ropivacaine on the proliferation, migration, invasion, and apoptosis of glioma cells in vitro. METHODS: Under ropivacaine stimul...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874551/ https://www.ncbi.nlm.nih.gov/pubmed/33817285 http://dx.doi.org/10.1515/biol-2020-0108 |
_version_ | 1783649605906333696 |
---|---|
author | Liu, Rong Wu, Min Xu, Guiju Ju, Lu Xiao, Jinhui Zhong, Wei He, Xiao Yang, Yan |
author_facet | Liu, Rong Wu, Min Xu, Guiju Ju, Lu Xiao, Jinhui Zhong, Wei He, Xiao Yang, Yan |
author_sort | Liu, Rong |
collection | PubMed |
description | BACKGROUND: Regional anesthesia has anti-proliferative and pro-apoptotic effects in various cancers. Therefore, the purpose of this study was to investigate the effects of ropivacaine on the proliferation, migration, invasion, and apoptosis of glioma cells in vitro. METHODS: Under ropivacaine stimulation conditions, proliferation, apoptosis, migration, and invasion of glioma cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT), flow cytometry, and transwell assays, respectively. Western blot assay was employed to measure the protein expression levels in glioma cells. The expression levels of small nucleolar RNA host gene 16 (SNHG16) and miR-424-5p were assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The interaction relationship between SNHG16 and miR-424-5p was predicted and confirmed using a bioinformatics database and dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays. RESULTS: After treatment with ropivacaine, proliferation, migration, and invasion were repressed while apoptosis was enhanced in glioma cells in a dose-depended manner. In addition, ropivacaine impeded SNHG16 expression in glioma cells. Importantly, overexpression of SNHG16 abolished the ropivacaine-induced effects on glioma cells. Analogously, knockdown of miR-424-5p counteracted the function of ropivacaine in glioma cells. We also found that SNHG16 bound to miR-424-5p and negatively regulated miR-424-5p expression in glioma cells. The rescue experiments indicated that ropivacaine might regulate glioma progression by targeting the SNHG16/miR-424-5p axis. CONCLUSION: Our findings revealed the anti-tumor effects of ropivacaine in glioma by targeting the SNHG16/miR-424-5p axis. These data might extend the understanding of regulatory mechanisms by which ropivacaine could suppress glioma development. |
format | Online Article Text |
id | pubmed-7874551 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | De Gruyter |
record_format | MEDLINE/PubMed |
spelling | pubmed-78745512021-04-01 Ropivacaine inhibits proliferation, migration, and invasion while inducing apoptosis of glioma cells by regulating the SNHG16/miR-424-5p axis Liu, Rong Wu, Min Xu, Guiju Ju, Lu Xiao, Jinhui Zhong, Wei He, Xiao Yang, Yan Open Life Sci Research Article BACKGROUND: Regional anesthesia has anti-proliferative and pro-apoptotic effects in various cancers. Therefore, the purpose of this study was to investigate the effects of ropivacaine on the proliferation, migration, invasion, and apoptosis of glioma cells in vitro. METHODS: Under ropivacaine stimulation conditions, proliferation, apoptosis, migration, and invasion of glioma cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT), flow cytometry, and transwell assays, respectively. Western blot assay was employed to measure the protein expression levels in glioma cells. The expression levels of small nucleolar RNA host gene 16 (SNHG16) and miR-424-5p were assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The interaction relationship between SNHG16 and miR-424-5p was predicted and confirmed using a bioinformatics database and dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays. RESULTS: After treatment with ropivacaine, proliferation, migration, and invasion were repressed while apoptosis was enhanced in glioma cells in a dose-depended manner. In addition, ropivacaine impeded SNHG16 expression in glioma cells. Importantly, overexpression of SNHG16 abolished the ropivacaine-induced effects on glioma cells. Analogously, knockdown of miR-424-5p counteracted the function of ropivacaine in glioma cells. We also found that SNHG16 bound to miR-424-5p and negatively regulated miR-424-5p expression in glioma cells. The rescue experiments indicated that ropivacaine might regulate glioma progression by targeting the SNHG16/miR-424-5p axis. CONCLUSION: Our findings revealed the anti-tumor effects of ropivacaine in glioma by targeting the SNHG16/miR-424-5p axis. These data might extend the understanding of regulatory mechanisms by which ropivacaine could suppress glioma development. De Gruyter 2020-12-31 /pmc/articles/PMC7874551/ /pubmed/33817285 http://dx.doi.org/10.1515/biol-2020-0108 Text en © 2020 Rong Liu et al., published by De Gruyter http://creativecommons.org/licenses/by/4.0 This work is licensed under the Creative Commons Attribution 4.0 International License. |
spellingShingle | Research Article Liu, Rong Wu, Min Xu, Guiju Ju, Lu Xiao, Jinhui Zhong, Wei He, Xiao Yang, Yan Ropivacaine inhibits proliferation, migration, and invasion while inducing apoptosis of glioma cells by regulating the SNHG16/miR-424-5p axis |
title | Ropivacaine inhibits proliferation, migration, and invasion while inducing apoptosis of glioma cells by regulating the SNHG16/miR-424-5p axis |
title_full | Ropivacaine inhibits proliferation, migration, and invasion while inducing apoptosis of glioma cells by regulating the SNHG16/miR-424-5p axis |
title_fullStr | Ropivacaine inhibits proliferation, migration, and invasion while inducing apoptosis of glioma cells by regulating the SNHG16/miR-424-5p axis |
title_full_unstemmed | Ropivacaine inhibits proliferation, migration, and invasion while inducing apoptosis of glioma cells by regulating the SNHG16/miR-424-5p axis |
title_short | Ropivacaine inhibits proliferation, migration, and invasion while inducing apoptosis of glioma cells by regulating the SNHG16/miR-424-5p axis |
title_sort | ropivacaine inhibits proliferation, migration, and invasion while inducing apoptosis of glioma cells by regulating the snhg16/mir-424-5p axis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874551/ https://www.ncbi.nlm.nih.gov/pubmed/33817285 http://dx.doi.org/10.1515/biol-2020-0108 |
work_keys_str_mv | AT liurong ropivacaineinhibitsproliferationmigrationandinvasionwhileinducingapoptosisofgliomacellsbyregulatingthesnhg16mir4245paxis AT wumin ropivacaineinhibitsproliferationmigrationandinvasionwhileinducingapoptosisofgliomacellsbyregulatingthesnhg16mir4245paxis AT xuguiju ropivacaineinhibitsproliferationmigrationandinvasionwhileinducingapoptosisofgliomacellsbyregulatingthesnhg16mir4245paxis AT julu ropivacaineinhibitsproliferationmigrationandinvasionwhileinducingapoptosisofgliomacellsbyregulatingthesnhg16mir4245paxis AT xiaojinhui ropivacaineinhibitsproliferationmigrationandinvasionwhileinducingapoptosisofgliomacellsbyregulatingthesnhg16mir4245paxis AT zhongwei ropivacaineinhibitsproliferationmigrationandinvasionwhileinducingapoptosisofgliomacellsbyregulatingthesnhg16mir4245paxis AT hexiao ropivacaineinhibitsproliferationmigrationandinvasionwhileinducingapoptosisofgliomacellsbyregulatingthesnhg16mir4245paxis AT yangyan ropivacaineinhibitsproliferationmigrationandinvasionwhileinducingapoptosisofgliomacellsbyregulatingthesnhg16mir4245paxis |