Cargando…

Effects of reverse deployment of cone-shaped vena cava filter on improvements in hemodynamic performance in vena cava

BACKGROUND: Cone-shaped vena cava filters (VCFs) are widely used to treat venous thromboembolism. However, in the long term, the problem of occlusion persists even after the filter is deployed. A previous study hypothesized that the reverse deployment of a cone-shaped VCFs may prevent filter blockag...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Ying, Xu, Zaipin, Deng, Xiaoyan, Yang, Shibo, Tan, Wenchang, Fan, Yubo, Han, Yong, Xing, Yubin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874631/
https://www.ncbi.nlm.nih.gov/pubmed/33563284
http://dx.doi.org/10.1186/s12938-021-00855-x
Descripción
Sumario:BACKGROUND: Cone-shaped vena cava filters (VCFs) are widely used to treat venous thromboembolism. However, in the long term, the problem of occlusion persists even after the filter is deployed. A previous study hypothesized that the reverse deployment of a cone-shaped VCFs may prevent filter blockage. METHODS: To explore this hypothesis, a comparative study of the traditional and reverse deployments of VCFs was conducted using a computational fluid dynamics approach. The distribution of wall shear stress (WSS) and shear stress-related parameters were calculated to evaluate the differences in hemodynamic effects between both conditions. In the animal experiment, we reversely deployed a filter in the vena cava of a goat and analyzed the blood clot distribution in the filter. RESULTS: The numerical simulation showed that the reverse deployment of a VCF resulted in a slightly higher shear rate on the thrombus, and no reductions in the oscillating shear index (OSI) and relative residence time (RRT) on the vessel wall. Comparing the traditional method with the reversely deployed cases, the shear rate values is 16.49 and 16.48 1/s, respectively; the minimal OSI values are 0.01 and 0.04, respectively; in the vicinity of the VCF, the RRT values are both approximately 5 1/Pa; and the WSS is approximately 0.3 Pa for both cases. Therefore, the reverse deployment of cone-shaped filters is not advantageous when compared with the traditional method in terms of local hemodynamics. However, it is effective in capturing thrombi in the short term, as demonstrated via animal experiments. The reversely deployed cone-shaped filter captured the thrombi at its center in the experiments. CONCLUSIONS: Thus, the reverse deployment of cone-shaped filters is not advantageous when compared with the traditional method in terms of local hemodynamics. Therefore, we would not suggest the reverse deployment of the cone-shaped filter in the vena cava to prevent a potentially fatal pulmonary embolism.