Cargando…

A comparative study of multimodal magnetic resonance in the differential diagnosis of acquired immune deficiency syndrome related primary central nervous system lymphoma and infection

BACKGROUND: Patients with acquired immune deficiency syndrome (AIDS) often suffer from opportunistic infections and related primary central nervous system lymphoma (AR-PCNSL). Both diseases showed multiple ring enhancement lesions in conventional magnetic resonance (MR). It is very difficult to make...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jingjing, Xue, Ming, Yan, Shuo, Guan, Chunshuang, Xie, Ruming, Chen, Budong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874668/
https://www.ncbi.nlm.nih.gov/pubmed/33568094
http://dx.doi.org/10.1186/s12879-021-05779-4
Descripción
Sumario:BACKGROUND: Patients with acquired immune deficiency syndrome (AIDS) often suffer from opportunistic infections and related primary central nervous system lymphoma (AR-PCNSL). Both diseases showed multiple ring enhancement lesions in conventional magnetic resonance (MR). It is very difficult to make the differential diagnosis. We aimed to investigate whether multimodal MR (diffusion weighted imaging (DWI)/ apparent diffusion coefficient (ADC), 3D pseudo-continuous arterial spin labeling (3D-pCASL) and susceptibility-weighted imaging (SWI)) combined with conventional MR can differentiate AR-PCNSL from infections. METHODS: This was a prospective study. We recruited 19 AIDS patients who were divided into AR-PCNSL group (9 cases) and infection group (10 cases) by pathological results. We analyzed whether there was statistical (Fisher’s method) difference in multimodal MR between the two groups. We analyzed whether multimodal MR combined with conventional MR could improve the diagnosis of AR-PCNSL. RESULTS: The lesions were more likely involved the paraventricular (0.020) and corpus callosum (0.033) in AR-PCNSL group in conventional MR. In multimodal MR, AR-PCNSL group showed low ADC value, with p values of 0.001. Infection group more inclined to high ADC value, with p was 0.003. In multimodal MR, AR-PCNSL group had more low signal intensity (grade 2–3) in the degree of intratumoral susceptibility signal intensity in SWI (SWI-ITSS), with p values of 0.001. The sensitivity, specificity of conventional MR in the diagnosis of AR-PCNSL was 88.9 and 70.0%. The conventional MR sequence combined with DWI/ADC sequence in the diagnosis of AR-PCNSL had a sensitivity of 100.0%, and a specificity of 60.0%. The sensitivity and specificity of the conventional MR sequence combined with the SWI-ITSS sequence in the diagnosis of AR-PCNSL were 100 and 70.0%. The conventional MR combined with ADC or SWI-ITSS improved the diagnosis of AR-PCNSL. CONCLUSION: Multimodal MR could distinguish AR-PCNSL from infectious lesions. The multimodal MR (DWI/ADC or SWI-ITSS) combined with conventional MR could improve the diagnosis of AR-PCNSL. The ADC value should be attached importance in clinical work. When distinguishing AR-PCNSL from toxoplasmosis or tuberculoma, SWI should be used to obtain a correct diagnosis.