Cargando…
Immune Negative Regulator TIPE2 Inhibits Cervical Squamous Cancer Progression Through Erk1/2 Signaling
Tumor necrosis factor (TNF)-α-induced protein-8-like 2, or TIPE2, is a newly found immune negative regulatory molecule. This study further investigated the role of TIPE2 on proliferation and invasion of cervical squamous cancer cells. Expression of TIPE2 was compared in cervical squamous cancer tiss...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874765/ https://www.ncbi.nlm.nih.gov/pubmed/33817189 http://dx.doi.org/10.1515/biol-2019-0059 |
Sumario: | Tumor necrosis factor (TNF)-α-induced protein-8-like 2, or TIPE2, is a newly found immune negative regulatory molecule. This study further investigated the role of TIPE2 on proliferation and invasion of cervical squamous cancer cells. Expression of TIPE2 was compared in cervical squamous cancer tissues and adjacent normal tissues by Western blot and immunohistochemistry (IHC). Cervical squamous cancer cell lines, SiHa and C33A, were transfected with recombinant plasmid encoding TIPE2 and tested for cytologic characteristics. The impact of TIPE2 on phosphorylation of extracellular signal-regulated kinase (Erk) signaling pathway was also tested by Western blot analysis of key factors. TIPE2 expression was higher in cervical cancer tissues than that in normal tissue. IHC score of tumor tissue was negatively associated with lymphatic metastasis. Over expression of TIPE2 effectively inhibited the proliferation of cervical cancer cells. Wound healing and transwell assay showed that over expression of TIPE2 suppressed cell migration and invasion in vitro. Meanwhile, phosphorylation of Erk1/2 and upstream mitogen-activated protein kinase kinase (MEK) 1/2 was reduced by TIPE2. TIPE2 is negatively related with development of cervical squamous cancer. TIPE2 is an inhibitory factor of proliferation and invasion of cervical squamous cancer cells, probably through inhibiting Erk signaling pathway. |
---|