Cargando…

Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images

Coronaviruses are a family of viruses that majorly cause respiratory disorders in humans. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus that causes the coronavirus disease 2019 (COVID-19). WHO has identified COVID-19 as a pandemic as it has spread across...

Descripción completa

Detalles Bibliográficos
Autores principales: Rajpal, Sheetal, Lakhyani, Navin, Singh, Ayush Kumar, Kohli, Rishav, Kumar, Naveen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874964/
https://www.ncbi.nlm.nih.gov/pubmed/33589854
http://dx.doi.org/10.1016/j.chaos.2021.110749
Descripción
Sumario:Coronaviruses are a family of viruses that majorly cause respiratory disorders in humans. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus that causes the coronavirus disease 2019 (COVID-19). WHO has identified COVID-19 as a pandemic as it has spread across the globe due to its highly contagious nature. For early diagnosis of COVID-19, the reverse transcription-polymerase chain reaction (RT-PCR) test is commonly done. However, it suffers from a high false-negative rate of up to 67% if the test is done during the first five days of exposure. As an alternative, research on the efficacy of deep learning techniques employed in the identification of COVID-19 disease using chest X-ray images is intensely pursued. As pneumonia and COVID-19 exhibit similar/ overlapping symptoms and affect the human lungs, a distinction between the chest X-ray images of pneumonia patients and COVID-19 patients becomes challenging. In this work, we have modeled the COVID-19 classification problem as a multiclass classification problem involving three classes, namely COVID-19, pneumonia, and normal. We have proposed a novel classification framework which combines a set of handpicked features with those obtained from a deep convolutional neural network. The proposed framework comprises of three modules. In the first module, we exploit the strength of transfer learning using ResNet-50 for training the network on a set of preprocessed images and obtain a vector of 2048 features. In the second module, we construct a pool of frequency and texture based 252 handpicked features that are further reduced to a set of 64 features using PCA. Subsequently, these are passed to a feed forward neural network to obtain a set of 16 features. The third module concatenates the features obtained from first and second modules, and passes them to a dense layer followed by the softmax layer to yield the desired classification model. We have used chest X-ray images of COVID-19 patients from four independent publicly available repositories, in addition to images from the Mendeley and Kaggle Chest X-Ray Datasets for pneumonia and normal cases. To establish the efficacy of the proposed model, 10-fold cross-validation is carried out. The model generated an overall classification accuracy of 0.974 [Formula: see text] 0.02 and a sensitivity of 0.987 [Formula: see text] 0.05, 0.963 [Formula: see text] 0.05, and 0.973 [Formula: see text] 0.04 at 95% confidence interval for COVID-19, normal, and pneumonia classes, respectively. To ensure the effectiveness of the proposed model, it was validated using an independent Chest X-ray cohort and an overall classification accuracy of 0.979 was achieved. Comparison of the proposed framework with state-of-the-art methods reveal that the proposed framework outperforms others in terms of accuracy and sensitivity. Since interpretability of results is crucial in the medical domain, the gradient-based localizations are captured using Gradient-weighted Class Activation Mapping (Grad-CAM). In summary, the results obtained are stable over independent cohorts and interpretable using Grad-CAM localizations that serve as clinical evidence.