Cargando…
WISDoM: Characterizing Neurological Time Series With the Wishart Distribution
WISDoM (Wishart Distributed Matrices) is a framework for the quantification of deviation of symmetric positive-definite matrices associated with experimental samples, such as covariance or correlation matrices, from expected ones governed by the Wishart distribution. WISDoM can be applied to tasks o...
Autores principales: | Mengucci, Carlo, Remondini, Daniel, Castellani, Gastone, Giampieri, Enrico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875084/ https://www.ncbi.nlm.nih.gov/pubmed/33584238 http://dx.doi.org/10.3389/fninf.2020.611762 |
Ejemplares similares
-
Active Degradation Explains the Distribution of Nuclear Proteins during Cellular Senescence
por: Giampieri, Enrico, et al.
Publicado: (2015) -
A network approach for low dimensional signatures from high throughput data
por: Curti, Nico, et al.
Publicado: (2022) -
Dr. J. Wilson Wishart
Publicado: (1902) -
Effectiveness of Biologically Inspired Neural Network Models in Learning and Patterns Memorization
por: Squadrani, Lorenzo, et al.
Publicado: (2022) -
Methods for the integration of multi-omics data: mathematical aspects
por: Bersanelli, Matteo, et al.
Publicado: (2016)