Cargando…
ROS Dynamics Delineate Functional States of Hippocampal Neural Stem Cells and Link to Their Activity-Dependent Exit from Quiescence
Cellular redox states regulate the balance between stem cell maintenance and activation. Increased levels of intracellular reactive oxygen species (ROS) are linked to proliferation and lineage specification. In contrast to this general principle, we here show that in the hippocampus of adult mice, q...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875116/ https://www.ncbi.nlm.nih.gov/pubmed/33275875 http://dx.doi.org/10.1016/j.stem.2020.10.019 |
_version_ | 1783649724004302848 |
---|---|
author | Adusumilli, Vijay S. Walker, Tara L. Overall, Rupert W. Klatt, Gesa M. Zeidan, Salma A. Zocher, Sara Kirova, Dilyana G. Ntitsias, Konstantinos Fischer, Tim J. Sykes, Alex M. Reinhardt, Susanne Dahl, Andreas Mansfeld, Jörg Rünker, Annette E. Kempermann, Gerd |
author_facet | Adusumilli, Vijay S. Walker, Tara L. Overall, Rupert W. Klatt, Gesa M. Zeidan, Salma A. Zocher, Sara Kirova, Dilyana G. Ntitsias, Konstantinos Fischer, Tim J. Sykes, Alex M. Reinhardt, Susanne Dahl, Andreas Mansfeld, Jörg Rünker, Annette E. Kempermann, Gerd |
author_sort | Adusumilli, Vijay S. |
collection | PubMed |
description | Cellular redox states regulate the balance between stem cell maintenance and activation. Increased levels of intracellular reactive oxygen species (ROS) are linked to proliferation and lineage specification. In contrast to this general principle, we here show that in the hippocampus of adult mice, quiescent neural precursor cells (NPCs) maintain the highest ROS levels (hiROS). Classifying NPCs on the basis of cellular ROS content identified distinct functional states. Shifts in ROS content primed cells for a subsequent state transition, with lower ROS content marking proliferative activity and differentiation. Physical activity, a physiological activator of adult hippocampal neurogenesis, recruited hiROS NPCs into proliferation via a transient Nox2-dependent ROS surge. In the absence of Nox2, baseline neurogenesis was unaffected, but the activity-induced increase in proliferation disappeared. These results provide a metabolic classification of NPC functional states and describe a mechanism linking the modulation of cellular ROS by behavioral cues to the activation of adult NPCs. |
format | Online Article Text |
id | pubmed-7875116 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-78751162021-02-18 ROS Dynamics Delineate Functional States of Hippocampal Neural Stem Cells and Link to Their Activity-Dependent Exit from Quiescence Adusumilli, Vijay S. Walker, Tara L. Overall, Rupert W. Klatt, Gesa M. Zeidan, Salma A. Zocher, Sara Kirova, Dilyana G. Ntitsias, Konstantinos Fischer, Tim J. Sykes, Alex M. Reinhardt, Susanne Dahl, Andreas Mansfeld, Jörg Rünker, Annette E. Kempermann, Gerd Cell Stem Cell Article Cellular redox states regulate the balance between stem cell maintenance and activation. Increased levels of intracellular reactive oxygen species (ROS) are linked to proliferation and lineage specification. In contrast to this general principle, we here show that in the hippocampus of adult mice, quiescent neural precursor cells (NPCs) maintain the highest ROS levels (hiROS). Classifying NPCs on the basis of cellular ROS content identified distinct functional states. Shifts in ROS content primed cells for a subsequent state transition, with lower ROS content marking proliferative activity and differentiation. Physical activity, a physiological activator of adult hippocampal neurogenesis, recruited hiROS NPCs into proliferation via a transient Nox2-dependent ROS surge. In the absence of Nox2, baseline neurogenesis was unaffected, but the activity-induced increase in proliferation disappeared. These results provide a metabolic classification of NPC functional states and describe a mechanism linking the modulation of cellular ROS by behavioral cues to the activation of adult NPCs. Cell Press 2021-02-04 /pmc/articles/PMC7875116/ /pubmed/33275875 http://dx.doi.org/10.1016/j.stem.2020.10.019 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Adusumilli, Vijay S. Walker, Tara L. Overall, Rupert W. Klatt, Gesa M. Zeidan, Salma A. Zocher, Sara Kirova, Dilyana G. Ntitsias, Konstantinos Fischer, Tim J. Sykes, Alex M. Reinhardt, Susanne Dahl, Andreas Mansfeld, Jörg Rünker, Annette E. Kempermann, Gerd ROS Dynamics Delineate Functional States of Hippocampal Neural Stem Cells and Link to Their Activity-Dependent Exit from Quiescence |
title | ROS Dynamics Delineate Functional States of Hippocampal Neural Stem Cells and Link to Their Activity-Dependent Exit from Quiescence |
title_full | ROS Dynamics Delineate Functional States of Hippocampal Neural Stem Cells and Link to Their Activity-Dependent Exit from Quiescence |
title_fullStr | ROS Dynamics Delineate Functional States of Hippocampal Neural Stem Cells and Link to Their Activity-Dependent Exit from Quiescence |
title_full_unstemmed | ROS Dynamics Delineate Functional States of Hippocampal Neural Stem Cells and Link to Their Activity-Dependent Exit from Quiescence |
title_short | ROS Dynamics Delineate Functional States of Hippocampal Neural Stem Cells and Link to Their Activity-Dependent Exit from Quiescence |
title_sort | ros dynamics delineate functional states of hippocampal neural stem cells and link to their activity-dependent exit from quiescence |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875116/ https://www.ncbi.nlm.nih.gov/pubmed/33275875 http://dx.doi.org/10.1016/j.stem.2020.10.019 |
work_keys_str_mv | AT adusumillivijays rosdynamicsdelineatefunctionalstatesofhippocampalneuralstemcellsandlinktotheiractivitydependentexitfromquiescence AT walkertaral rosdynamicsdelineatefunctionalstatesofhippocampalneuralstemcellsandlinktotheiractivitydependentexitfromquiescence AT overallrupertw rosdynamicsdelineatefunctionalstatesofhippocampalneuralstemcellsandlinktotheiractivitydependentexitfromquiescence AT klattgesam rosdynamicsdelineatefunctionalstatesofhippocampalneuralstemcellsandlinktotheiractivitydependentexitfromquiescence AT zeidansalmaa rosdynamicsdelineatefunctionalstatesofhippocampalneuralstemcellsandlinktotheiractivitydependentexitfromquiescence AT zochersara rosdynamicsdelineatefunctionalstatesofhippocampalneuralstemcellsandlinktotheiractivitydependentexitfromquiescence AT kirovadilyanag rosdynamicsdelineatefunctionalstatesofhippocampalneuralstemcellsandlinktotheiractivitydependentexitfromquiescence AT ntitsiaskonstantinos rosdynamicsdelineatefunctionalstatesofhippocampalneuralstemcellsandlinktotheiractivitydependentexitfromquiescence AT fischertimj rosdynamicsdelineatefunctionalstatesofhippocampalneuralstemcellsandlinktotheiractivitydependentexitfromquiescence AT sykesalexm rosdynamicsdelineatefunctionalstatesofhippocampalneuralstemcellsandlinktotheiractivitydependentexitfromquiescence AT reinhardtsusanne rosdynamicsdelineatefunctionalstatesofhippocampalneuralstemcellsandlinktotheiractivitydependentexitfromquiescence AT dahlandreas rosdynamicsdelineatefunctionalstatesofhippocampalneuralstemcellsandlinktotheiractivitydependentexitfromquiescence AT mansfeldjorg rosdynamicsdelineatefunctionalstatesofhippocampalneuralstemcellsandlinktotheiractivitydependentexitfromquiescence AT runkerannettee rosdynamicsdelineatefunctionalstatesofhippocampalneuralstemcellsandlinktotheiractivitydependentexitfromquiescence AT kempermanngerd rosdynamicsdelineatefunctionalstatesofhippocampalneuralstemcellsandlinktotheiractivitydependentexitfromquiescence |