Cargando…
Data structure set-trie for storing and querying sets: Theoretical and empirical analysis
Set containment operations form an important tool in various fields such as information retrieval, AI systems, object-relational databases, and Internet applications. In the paper, a set-trie data structure for storing sets is considered, along with the efficient algorithms for the corresponding set...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875400/ https://www.ncbi.nlm.nih.gov/pubmed/33566827 http://dx.doi.org/10.1371/journal.pone.0245122 |
Sumario: | Set containment operations form an important tool in various fields such as information retrieval, AI systems, object-relational databases, and Internet applications. In the paper, a set-trie data structure for storing sets is considered, along with the efficient algorithms for the corresponding set containment operations. We present the mathematical and empirical study of the set-trie. In the mathematical study, the relevant upper-bounds on the efficiency of its expected performance are established by utilizing a natural probabilistic model. In the empirical study, we give insight into how different distributions of input data impact the efficiency of set-trie. Using the correct parameters for those randomly generated datasets, we expose the key sources of the input sensitivity of set-trie. Finally, the empirical comparison of set-trie with the inverted index is based on the real-world datasets containing sets of low cardinality. The comparison shows that the running time of set-trie consistently outperforms the inverted index by orders of magnitude. |
---|