Cargando…
Causal network inference from gene transcriptional time-series response to glucocorticoids
Gene regulatory network inference is essential to uncover complex relationships among gene pathways and inform downstream experiments, ultimately enabling regulatory network re-engineering. Network inference from transcriptional time-series data requires accurate, interpretable, and efficient determ...
Autores principales: | Lu, Jonathan, Dumitrascu, Bianca, McDowell, Ian C., Jo, Brian, Barrera, Alejandro, Hong, Linda K., Leichter, Sarah M., Reddy, Timothy E., Engelhardt, Barbara E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875426/ https://www.ncbi.nlm.nih.gov/pubmed/33513136 http://dx.doi.org/10.1371/journal.pcbi.1008223 |
Ejemplares similares
-
Glucocorticoid receptor recruits to enhancers and drives activation by motif-directed binding
por: McDowell, Ian C., et al.
Publicado: (2018) -
Clustering gene expression time series data using an infinite Gaussian process mixture model
por: McDowell, Ian C., et al.
Publicado: (2018) -
Co-expression networks reveal the tissue-specific regulation of transcription and splicing
por: Saha, Ashis, et al.
Publicado: (2017) -
An introduction to causal inference for pharmacometricians
por: Rogers, James A., et al.
Publicado: (2022) -
The Role of Quantification of Glucocorticoid-associated Toxicity in Severe Asthma
por: McDowell, PJ, et al.
Publicado: (2021)