Cargando…

The impact of the gut microbiome on memory and sleep in Drosophila

The gut microbiome has been proposed to influence diverse behavioral traits of animals, although the experimental evidence is limited and often contradictory. Here, we made use of the tractability of Drosophila melanogaster for both behavioral analyses and microbiome studies to test how elimination...

Descripción completa

Detalles Bibliográficos
Autores principales: Silva, Valeria, Palacios-Muñoz, Angelina, Okray, Zeynep, Adair, Karen L., Waddell, Scott, Douglas, Angela E., Ewer, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875489/
https://www.ncbi.nlm.nih.gov/pubmed/33376141
http://dx.doi.org/10.1242/jeb.233619
Descripción
Sumario:The gut microbiome has been proposed to influence diverse behavioral traits of animals, although the experimental evidence is limited and often contradictory. Here, we made use of the tractability of Drosophila melanogaster for both behavioral analyses and microbiome studies to test how elimination of microorganisms affects a number of behavioral traits. Relative to conventional flies (i.e. with unaltered microbiome), microbiologically sterile (axenic) flies displayed a moderate reduction in memory performance in olfactory appetitive conditioning and courtship assays. The microbiological status of the flies had a small or no effect on anxiety-like behavior (centrophobism) or circadian rhythmicity of locomotor activity, but axenic flies tended to sleep for longer and displayed reduced sleep rebound after sleep deprivation. These last two effects were robust for most tests conducted on both wild-type Canton S and w(1118) strains, as well for tests using an isogenized panel of flies with mutations in the period gene, which causes altered circadian rhythmicity. Interestingly, the effect of absence of microbiota on a few behavioral features, most notably instantaneous locomotor activity speed, varied among wild-type strains. Taken together, our findings demonstrate that the microbiome can have subtle but significant effects on specific aspects of Drosophila behavior, some of which are dependent on genetic background.