Cargando…
Oxygen consumption of individual cable bacteria
The electric wires of cable bacteria possibly support a unique respiration mode with a few oxygen-reducing cells flaring off electrons, while oxidation of the electron donor and the associated energy conservation and growth is allocated to other cells not exposed to oxygen. Cable bacteria are centim...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875522/ https://www.ncbi.nlm.nih.gov/pubmed/33568484 http://dx.doi.org/10.1126/sciadv.abe1870 |
Sumario: | The electric wires of cable bacteria possibly support a unique respiration mode with a few oxygen-reducing cells flaring off electrons, while oxidation of the electron donor and the associated energy conservation and growth is allocated to other cells not exposed to oxygen. Cable bacteria are centimeter-long, multicellular, filamentous Desulfobulbaceae that transport electrons across oxic-anoxic interfaces in aquatic sediments. From observed distortions of the oxic-anoxic interface, we derived oxygen consumption rates of individual cable bacteria and found biomass-specific rates of unheard magnitude in biology. Tightly controlled behavior, possibly involving intercellular electrical signaling, was found to generally keep <10% of individual filaments exposed to oxygen. The results strengthen the hypothesis that cable bacteria indeed have evolved an exceptional way to take the full energetic advantages of aerobic respiration and let >90% of the cells metabolize in the convenient absence of oxidative stress. |
---|