Cargando…
Implementable tensor methods in unconstrained convex optimization
In this paper we develop new tensor methods for unconstrained convex optimization, which solve at each iteration an auxiliary problem of minimizing convex multivariate polynomial. We analyze the simplest scheme, based on minimization of a regularized local model of the objective function, and its ac...
Autor principal: | Nesterov, Yurii |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875858/ https://www.ncbi.nlm.nih.gov/pubmed/33627889 http://dx.doi.org/10.1007/s10107-019-01449-1 |
Ejemplares similares
-
Subgradient ellipsoid method for nonsmooth convex problems
por: Rodomanov, Anton, et al.
Publicado: (2022) -
Local convergence of tensor methods
por: Doikov, Nikita, et al.
Publicado: (2021) -
Lectures on convex optimization
por: Nesterov, Yurii
Publicado: (2018) -
Fast Augmented Lagrangian Method in the convex regime with convergence guarantees for the iterates
por: Boţ, Radu Ioan, et al.
Publicado: (2022) -
Strengthening convex relaxations of 0/1-sets using Boolean formulas
por: Fiorini, Samuel, et al.
Publicado: (2020)